500 đề bất đẳng thức chọn lọc ( cực khó)

Chia sẻ: Trần Bá Trung | Ngày: | Loại File: PDF | Số trang:49

0
142
lượt xem
41
download

500 đề bất đẳng thức chọn lọc ( cực khó)

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu '500 đề bất đẳng thức chọn lọc ( cực khó)', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: 500 đề bất đẳng thức chọn lọc ( cực khó)

  1. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang ♦♦♦♦♦ Vĩnh Long, Xuân M u Tý, 2008
  2. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 500 Bài Toán B t ð ng Th c Ch n L c ♦♦♦♦♦ 1. Cho a, b, c là các s th c dương. Ch ng minh r ng 2 2 2 3 2 a 2 + (1− b) + b 2 + (1− c) + c 2 + (1− a ) ≥ . 2 Komal 2. [ Dinu Serbănescu ] Cho a, b, c ∈ (0,1) . Ch ng minh r ng abc + (1− a )(1− b)(1− c) < 1 . Junior TST 2002, Romania 3. [ Mircea Lascu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng b+c c +a a +b + + ≥ a + b + c + 3. a b c Gazeta Matematică 4. N u phương trình x 4 + ax3 + 2 x 2 + bx + 1 = 0 có ít nh t m t nghi m th c, thì a 2 + b2 ≥ 8 . Tournament of the Towns, 1993 5. Cho các s th c x, y, z th a mãn ñi u ki n x 2 + y 2 + z 2 = 1 . Hãy tìm giá tr l n nh t c a bi u th c x3 + y 3 + z 3 − 3xyz . 6. Cho a, b, c, x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = 1 . Ch ng minh r ng ax + by + cz + 2 ( xy + yz + zx )(ab + bc + ca ) ≤ a + b + c . Ukraine, 2001 7. [ Darij Grinberg] Cho a, b, c là các s th c dương. Ch ng minh r ng a b c 9 + + ≥ . (b + c) 2 (c + a ) 2 2 ( a + b) 4 (a + b + c) 8. [ Hojoo Lee ] Cho a, b, c ≥ 0 . Ch ng minh r ng a4 + a2b2 + b4 + b4 + b2c2 + c4 + c4 + c2a2 + a4 ≥ a 2a2 + bc + b 2b2 + ca + c 2c2 + ab . Gazeta Matematică 9. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 2 . Ch ng minh r ng a 3 + b 3 + c3 ≥ a b + c + b c + a + c a + b . JBMO 2002 Shortlist 10. [ Ioan Tomescu ] Cho x, y, z là các s th c dương. Ch ng minh r ng xyz 1 ≤ 4. (1 + 3x)( x + 8 y )( y + 9 z )( z + 6) 7 2
  3. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang Gazeta Matematică 11. [ Mihai Piticari, Dan Popescu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng 5 (a 2 + b 2 + c 2 ) ≤ 6 (a 3 + b 3 + c3 ) +1 . 12. [ Mircea Lascu ] Cho x1 , x2 ,..., xn ∈ ℝ , n ≥ 2, a > 0 sao cho a2 x1 + x2 + ... + xn = a, x12 + x2 + ... + xn ≤ 2 2 . n −1 Ch ng minh r ng  2a  xi ∈ 0,  , i = 1, 2,..., n .  n  13. [ Adrian Zahariuc ] Cho a, b, c ∈ (0,1) . Ch ng minh r ng b a c b a c + + ≥1 . 4b c − c a 4c a − a b 4a b − b c 14. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc ≤ 1 . Ch ng minh r ng a b c + + ≥ a +b+c . b c a 15. [ Vasile Cirtoaje, Mircea Lascu ] Cho a, b, c, x, y, z là các s th c dương th a mãn ñi u ki n a + x ≥ b + y ≥ c + z , a + b + c = x + y + z . Ch ng minh r ng ay + bx ≥ ac + xz . 16. [ Vasile Cirtoaje, Mircea Lascu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng 3 6 1+ ≥ . a + b + c ab + bc + ca Junior TST 2003, Romania 17. Cho a, b, c là các s th c dương. Ch ng minh r ng a 3 b3 c 3 a 2 b 2 c 2 + + ≥ + + . b2 c2 a 2 b c a JBMO 2002 Shortlist 18. Cho x1 , x2 ,..., xn > 0, n > 3 th a mãn ñi u ki n x1 x2 ...xn = 1 . Ch ng minh r ng 1 1 1 + + ... + >1. 1 + x1 + x1 x2 1 + x2 x3 1 + xn + xn x1 Russia, 2004 19. [ Marian Tetiva ] Cho x, y, z là các s th c dương th a ñi u ki n x 2 + y 2 + z 2 + 2 xyz = 1 . Ch ng minh r ng 1 a) xyz ≤ , 8 3 b) x + y + z ≤ , 2 3
  4. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 3 c) xy + yz + zx ≤ ≤ x 2 + y 2 + z 2 , 4 1 d) xy + yz + zx ≤ + 2 xyz . 2 20. [ Marius Olteanu ] Cho x1 , x2 ,..., x5 ∈ ℝ sao cho x1 + x2 + ... + x5 = 0 . Ch ng minh r ng cos x1 + cos x2 + ... + cos x5 ≥ 1 . Gazeta Matematică 21. [ Florina Cârlan, Marian Tetiva ] Cho x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = xyz . Ch ng minh r ng xy + yz + zx ≥ 3 + x 2 + 1 + y 2 + 1 + z 2 + 1 . 22. [ Laurentiu Panaitopol ] Cho x, y, z là các s th c th a mãn ñi u ki n x, y , z > −1 . Ch ng minh r ng 1+ x2 1+ y2 1+ z 2 + + ≥2. 1+ y + z 2 1+ z + x2 1+ x + y 2 JBMO, 2003 23. Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng a2 + b b2 + c c2 + a + + ≥ 2. b+c c+a a +b 24. Cho a, b, c ≥ 0 th a mãn ñi u ki n a 4 + b 4 + c 4 ≤ 2 (a 2b 2 + b 2 c 2 + c 2 a 2 ) . Ch ng minh r ng a 2 + b 2 + c 2 ≤ 2 (ab + bc + ca ) . Kvant, 1988 25. Cho x1 , x2 ,..., xn > 0, n > 2 th a mãn ñi u ki n 1 1 1 1 + + ... + = . x1 +1998 x2 +1998 xn +1998 1998 Ch ng minh r ng n x1 x2 ...xn ≥ 1998 . n −1 Vietnam, 1998 26. [Marian Tetiva ] Cho x, y, z là các s th c dương th a mãn ñi u ki n x 2 + y 2 + z 2 = xyz . Ch ng minh r ng a) xyz ≥ 27, b) xy + yz + zx ≥ 27 , c) x + y + z ≥ 9 , d) xy + yz + zx ≥ 2 ( x + y + z ) + 9 . 27. Cho x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = 3 . Ch ng minh r ng x + y + z ≥ xy + yz + zx . 4
  5. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang Russia 2002 28. [ D. Olteanu ] Cho a, b, c là các s th c dương. Ch ng minh r ng a+b a b+c b c+a c 3 . + . + . ≥ . b + c 2a + b + c c + a 2b + c + a a + b 2c + a + b 4 Gazeta Matematică 29. Cho a, b, c là các s th c dương. Ch ng minh r ng a b c c +a a+b b+c + + ≥ + + . b c a c +b a +c b+a India, 2002 30. Cho a, b, c là các s th c dương. Ch ng minh r ng a3 b3 c3 3(ab + bc + ca) 2 2 + 2 2 + 2 2 ≥ . b − bc + c c − ac + a a − ab + b a +b +c Proposed for the Balkan Mathematical Olympical 31. [ Adrian Zahariuc ] Cho x1 , x2 ,..., xn là các s nguyên ñôi m t phân bi t nhau. Ch ng minh r ng x12 + x2 + ... + xn ≥ x1 x2 + x2 x3 ... + xn x1 + 2n − 3 . 2 2 32. [ Murray Klamkin ] Cho x1 , x2 ,..., xn ≥ 0, n > 2 th a mãn ñi u ki n x1 + x2 + ... + xn = 1 . Hãy tìm giá tr l n nh t c a bi u th c x12 x2 + x2 x3 + ... + xn−1 xn + xn x1 . 2 2 2 Crux Mathematicorum 33. Cho x1 , x2 ,..., xn > 0 th a mãn ñi u ki n xk +1 ≥ x1 + x2 + ... + xk v i m i k. Hãy tìm giá tr l n nh t c a h ng s c sao cho x1 + x2 + ... + xn ≤ c x1 + x2 + ... + xn . IMO Shortlist, 1986 34. Cho các s th c dương a, b, c, x, y, z th a mãn ñi u ki n a + x = b + y = c + z = 1. Ch ng minh r ng 1 1 1   (abc + xyz ) + + ≥ 3.     ay bz cx  Russia, 2002 35. [ Viorel Vâjâitu, Alexvàru Zaharescu ] Cho a, b, c là các s th c dương. Ch ng minh r ng ab bc ca 1 + + ≤ (a + b + c) . a + b + 2c b + c + 2a c + a + 2b 4 Gazeta Matematică 36. Cho a, b, c, d là các s th c th a mãn ñi u ki n a 2 + b 2 + c 2 + d 2 = 1 . Tìm giá tr nh nh t c a bi u th c a 3 (b + c + d ) + b3 (c + d + a) + c 3 (d + a + b) + d 3 (a + b + c) . 37. [ Walther Janous ] Cho x, y, z là các s th c dương. Ch ng minh r ng 5
  6. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang x y z + + ≤1 . x + ( x + y )( x + z ) y + ( y + z )( y + x ) z + ( z + x)( z + y ) Crux Mathematicorum 38. Cho a1 , a2 ,..., an , n ≥ 2 là n s th c sao cho a1 < a2 < ... < an . Ch ng minh r ng a1a2 + a2 a3 + ... + an a14 ≥ a2 a14 + a3a2 + ... + a1an . 4 4 4 4 39. [ Mircea Lascu ] Cho a, b, c là các s th c dương. Ch ng minh r ng b+c c +a a +b  a b c . + + ≥ 4  + +   a b c b + c c + a a + b  40. Cho a1 , a2 ,..., an là các s nguyên dương l n hơn 1. T n t i ít nh t m t trong các s 3 a1 a1 , a2 a3 ,..., an−1 an , an a1 nh hơn ho c b ng 3. Adapted after a well – known problem 41. [ Mircea Lascu, Marian Tetiva ] Cho x, y, z là các s th c dương th a mãn ñi u ki n xy + yz + zx + 2 xyz = 1 . Ch ng minh r ng 1 a) xyz ≤ , 8 3 b) x + y + z ≥ , 2 1 1 1 c) + + ≥ 4( x + y + z) , x y z 2 1 1 1 (2 z −1) d) + + − 4( x + y + z) ≥ , z = max { x, y, z } . x y z z (2 z +1) 42. [ Manlio Marangelli ] Cho x, y, z là các s th c dương. Ch ng minh r ng 3( x 2 y + y 2 z + z 2 x )( xy 2 + yz 2 + zx 2 ) ≥ xyz ( x + y + z ) . 3 43. [ Gabriel Dospinescu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n max {a, b, c} − min {a, b, c} ≤ 1 Ch ng minh r ng 1 + a 3 + b3 + c 3 + 6abc ≥ 3a 2b + 3b 2 c + 3c 2 a . 44. [ Gabriel Dospinescu ] Cho a, b, c là các s th c dương. Ch ng minh r ng  a 2  b2  c2   1 1 1 27 + 2 + 2 + 2 +  ≥ 6 (a + b + c ) + +  .         bc    ca    ab  a b c     1 a2 45. Cho a0 = , a k+1 = ak + k . Ch ng minh r ng 2 n 1 1− < an < 1 . n TST Singapore 46. [ Călin Popa ] Cho a, b, c ∈ (0,1) th a mãn ñi u ki n ab + bc + ca = 1 . Ch ng minh r ng 6
  7. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang a b c 3 1− a 2 1− b2 1− c 2   + + ≥  + + . 1 − a 2 1− b 2 1− c 2 4  a  b c    47. [ Titu Vàreescu, Gabriel Dospinescu ] Cho x, y, z ≤ 1 th a mãn ñi u ki n x + y + z = 1 . Ch ng minh r ng 1 1 1 27 2 + 2 + 2 ≤ . 1+ x 1+ y 1+ z 10 48. [ Gabriel Dospinescu ] Cho x + y + z = 1 . Ch ng minh r ng 2 2 2 (1− x) (1− y ) (1− z ) ≥ 215 xyz ( x + y )( y + z )( z + x) . 49. Cho x, y, z là các s th c dương th a mãn ñi u ki n xyz = x + y + z +2 . Ch ng minh r ng a) xy + yz + zx ≥ 2 ( x + y + z ) , 3 b) x+ y+ z≤ xyz . 2 50. Cho x, y, z là các s th c th a mãn ñi u ki n x 2 + y 2 + z 2 = 2 . Ch ng minh r ng x + y + z ≤ xyz + 2 . IMO Shortlist, 1987 51. [ Titu Vàreescu, Gabriel Dospinescu ] Cho x1 , x2 ,..., xn ∈ (0,1) và σ là m t hoán v c a {1, 2,..., n} . Ch ng minh r ng  n   ∑ xi   n      n 1 1 + i=1 .  1   ∑ 1− x ≥   ∑   1− x . x  .  n   i=1   i=1   i σ(i )  i       n 1 52. Cho x1 , x2 ,..., xn là các s th c dương th a mãn ñi u ki n ∑ 1+ x = 1 . Ch ng minh r ng i=1 i n n 1 ∑ xi ≥ (n −1) ∑ xi . i=1 i=1 Vojtech Jarnik n 53. [ Titu Vàreescu ] Cho n > 3 và a1 , a2 ,..., an là các s th c th a mãn ñi u ki n ∑a ≥ n i i=1 n và ∑a 2 i ≥ n 2 . Ch ng minh r ng i=1 max {a1 , a2 ,..., an } ≥ 2 . USAMO, 1999 54. [ Vasile Cirtoaje ] Cho a, b, c, d là các s th c dương. Ch ng minh r ng a −b b−c c − d d −a + + + ≥0. b+c c +d d +a a +b 55. Cho x, y là các s th c dương. Ch ng minh r ng x y + yx >1 . 7
  8. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang France, 1996 56. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng (a + b)(b + c)(c + a ) ≥ 4 (a + b + c −1) . MOSP, 2001 57. Cho a, b, c là các s th c dương. Ch ng minh r ng (a 2 + b2 + c2 )(a + b − c)(b + c − a)(c + a − b) ≤ abc (ab + bc + ca) . 58. [ D.P.Mavlo ] Cho a, b, c là các s th c dương. Ch ng minh r ng 1 1 1 a b c (a + 1)(b +1)(c +1) 3+ a +b + c + + + + + + ≥ 3 . a b c b c a 1 + abc Kvant, 1988 59. [ Gabriel Dospinescu ] Cho x1 , x2 ,..., xn là các s th c dương th a mãn ñi u ki n x1 x2 ...xn = 1 . Ch ng minh r ng  n 1 n n n n .∏( x + 1) ≥ ∑ xi + ∑  . n n     i=1 i  i =1  x i=1 i 60. Cho a, b, c, d là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng 1 1 d    a 3 + b3 + c3 + abcd ≥ min  , +  .  4 9 27      Kvant, 1993 61. Cho a, b, c là các s th c dương. Ch ng minh r ng ∑ (1+ a ) (1 + b ) (a − c) (b − c) ≥ (1 + a )(1 + b )(1 + c )(a − b) (b − c) (c − a) . 2 2 2 2 2 2 2 2 2 2 2 2 AMM 62. [ Titu Vàreescu, Mircea Lascu ] Cho x, y, z là các s th c dương th a mãn ñi u ki n xyz = 1 và α ≥ 1. Ch ng minh r ng xα yα zα 3 + + ≥ . y+z z+x x+ y 2 63. Cho x1, x2 ,..., xn , y1, y2 ,..., yn ∈ ℝ th a mãn ñi u ki n x12 + x2 +... + xn = y12 + y2 +... + yn =1 . 2 2 2 2 Ch ng minh r ng  n  ( x1 y2 − x2 y1 ) ≤ 2 1− ∑ xi yi  .  2    i=1    Korea, 2001 64. [ Laurentiu Panaitopol ] Cho a1 , a2 ,..., an là các s nguyên dương khác nhau t ng ñôi m t. Ch ng minh r ng 2n + 1 a12 + a2 + ... + an ≥ 2 2 (a1 + a2 + ... + an ) . 3 TST Romania 65. [ Călin Popa ] Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng 8
  9. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang b c c a a b 3 3 + + ≥ . a ( 3c + ab ) b ( 3a + bc ) c ( 3b + ca ) 4 66. [ Titu Vàreescu, Gabriel Dospinescu ] Cho a, b, c, d là các s th c th a mãn ñi u ki n (1 + a 2 )(1+ b2 )(1+ c 2 )(1 + d 2 ) = 16 . Ch ng minh r ng −3 ≤ ab + bc + cd + da + ac + bd − abcd ≤ 5 . 67. Cho a, b, c là các s th c dương. Ch ng minh r ng (a 2 + 2)(b2 + 2)(c2 + 2) ≥ 9(ab + bc + ca) . APMO, 2004 68. [ Vasile Cirtoale ] Cho x, y, z là các s th c th a mãn các ñi u ki n 0 < x ≤ y ≤ z, x + y + z = xyz + 2 . Ch ng minh r ng a) (1− xy )(1− yz )(1− zx) ≥ 0 , 32 b) x 2 y ≤ 1, x 3 y 2 ≤ . 27 69. [ Titu Vàreescu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c ≥ abc . Ch ng minh r ng ít nh t m t trong ba b t ñ ng th c sau ñây là ñúng 2 3 6 2 3 6 2 3 6 + + ≥ 6, + + ≥ 6, + + ≥ 6 . a b c b c a c a b TST 2001, USA 70. [ Gabriel Dospinescu, Marian Tetiva ] Cho x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = xyz . Ch ng minh r ng ( x −1)( y −1)( z −1) ≤ 6 3 −10 . 71. [ Marian Tetiva ] Cho a, b, c là các s th c dương. Ch ng minh r ng 2 2 2 a3 − b3 b3 − c3 c 3 − a3 (a − b) + (b − c ) + (c − a ) + + ≤ . a +b b+c c+a 4 Moldova TST, 2004 72. [ Titu Vàreescu ] Cho a, b, c là các s th c dương. Ch ng minh r ng (a5 − a 2 + 3)(b5 − b2 + 3)(c5 − c 2 + 3) ≥ (a + b + c)3 . USAMO, 2004 73. [ Gabriel Dospinescu ] Cho x1 , x2 ,..., xn > 0, n > 2 th a mãn ñi u ki n  n  n 1    x  ∑ k   ∑  = n 2 + 1 .   k =1  k =1 xk     Ch ng minh r ng  n 2  n 1    2  x   ∑ k  ∑ 2  > n + 4 + 2 .   k =1  k =1 xk   n (n −1)   74. [ Gabriel Dospinescu, Mircea Lascu, Marian Tetiva ] Cho a, b, c là các s th c dương. Ch ng minh r ng 9
  10. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang a 2 + b 2 + c 2 + 2abc + 3 ≥ (1 + a)(1 + b)(1 + c) . 75. [ Titu Vàreescu, Zuming Feng ] Cho a, b, c là các s th c dương. Ch ng minh r ng 2 2 2 ( 2a + b + c ) (2b + a + c) (2c + b + c) 2 + 2 2 + 2 2 ≤8. 2a + (b + c) 2 2b + (a + c) 2c + (a + b) USAMO, 2003 76. Cho x, y là các s th c dương và m, n là các s nguyên dương. Ch ng minh r ng (n −1)(m −1)( x m+n + y m+n ) + (m + n −1)( x m y n + x n y m ) ≥ mn ( x m+n−1 y + y m+n−1 x) . Austrian – Polish Competition, 1995 77. Cho a, b, c, d , e là các s th c dương th a mãn ñi u ki n abcde = 1 . Ch ng minh r ng a + abc b + bcd c + cde d + dea e + eab 10 + + + + ≥ . 1 + ab + abcd 1 + bc + bcde 1 + cd + cdea 1 + de + deab 1 + ea + eabc 3 Crux Mathematicorum  π 78. [ Titu Vàreescu ] Cho a, b, c ∈ 0,  . Ch ng minh r ng  2     sin a.sin (a − b).sin (a − c ) sin b.sin (b − c ).sin (b − a ) sin c.sin (c − a ).sin (c − b) + + ≥0. sin (b + c ) sin (c + a ) sin (a + b) TST 2003, USA 79. Cho a, b, c là các s th c dương. Ch ng minh r ng a 4 + b4 + c 4 + a 2b 2 + b 2c 2 + c 2 a 2 ≥ a 3b + b3c + c 3a + ab3 + bc3 + ca 3 . KMO Summer Program Test, 2001 80. [ Gabriel Dospinescu, Mircea Lascu ] Cho a1 , a2 ,..., an > 0, n > 2 th a mãn ñi u ki n a1a2 ...an = 1 . Hãy tìm h ng s kn nh nh t sao cho a1a2 a2 a3 an a1 + + ... + ≤ kn . (a2 1 + a2 )(a + a1 ) 2 2 (a 2 2 + a3 )(a + a2 ) 2 3 (a 2 n + a1 )(a12 + an ) 81. [ Vasile Cirtoaje ] Cho a, b, c, x, y, z là các s th c dương. Ch ng minh r ng 2 ax + by + cz + (a 2 + b2 + c 2 )( x 2 + y 2 + z 2 ) ≥ 3 (a + b + c)( x + y + z ) . Kvant, 1989 82. [ Vasile Cirtoaje ] Cho a, b, c là ñ dài ba c nh c a m t tam giác. Ch ng minh r ng a b c  b c a 3 + + −1 ≥ 2  + +  .       b c a   a b c  83. [ Walther Janous ] Cho x1 , x2 ,..., xn > 0, n > 2 th a mãn ñi u ki n x1 + x2 + ... + xn = 1 . Ch ng minh r ng   n   1 + 1  ≥  n − xi  . n ∏ x  ∏ 1 − x   i=1     i=1      i i Crux Mathematicorum 10
  11. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 84. [ Vasile Cirtoaje, Gheoghe Eckstein ] Cho x1 , x2 ,..., xn là các s th c dương th a mãn ñi u ki n x1 x2 ...xn = 1 . Ch ng minh r ng 1 1 1 + + ... + ≤1 . n −1 + x1 n −1 + x2 n −1 + xn TST 1999, Romania 85. [ Titu Vàreescu ] Cho a, b, c là các s th c không âm th a ñi u ki n a2 +b2 +c2 +abc = 4 . Ch ng minh r ng 0 ≤ ab + bc + ca − abc ≤ 2 . USAMO, 2001 86. [ Titu Vàreescu ] Cho a, b, c là các s th c dương. Ch ng minh r ng a +b +c 3 {( ) ( ) ( ) }. 2 2 2 − abc ≤ max a− b , b− c , c− a 3 TST 2000, USA 87. [ Kiran Kedlaya ] Cho a, b, c là các s th c dương. Ch ng minh r ng a + ab + 3 abc 3 a + b a + b + c ≤ a. . . 3 2 3 88. Tìm h ng s k l n nh t sao cho v i b t kì s nguyên dương n không chính phương, ta có (1+ n ) sin (π n ) > k . Vietnamese IMO Training Camp, 1995 3 89. [ Tr n Nam Dũng ] Cho x, y, z là các s th c dương th a ñi u ki n ( x + y + z ) = 32 xyz . Tìm giá tr l n nh t và giá tr nh nh t c a bi u th c x4 + y4 + z 4 4 . (x + y + z) Vietnam, 2004 90. [ George Tsintifas ] Cho a, b, c, d là các s th c dương. Ch ng minh r ng 3 3 3 3 4 (a + b) (b + c) (c + d ) (d + a) ≥ 16a 2b2 c 2 d 2 (a + b + c + d ) . Crux Mathematicorum 91. [ Titu Vàreescu, Gabriel Dospinescu ] Cho a, b, c là các s th c không âm th a mãn ñi u ki n a + b + c = 1 và n là s nguyên dương. Tìm giá tr l n nh t c a bi u th c (ab) (bc) (ca) n n n + + . 1− ab 1− bc 1− ca 92. Cho a, b, c là các s th c dương. Ch ng minh r ng 1 1 1 3 + + ≥ . a (1 + b) b (1 + c ) c (1 + a ) 3 abc 1 + 3 abc ( ) 93. [Tr n Nam Dũng ] Cho a, b, c là các s th c dương th a mãn ñi u ki n a 2 + b2 + c 2 = 9 . Ch ng minh r ng 11
  12. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 2 (a + b + c) − abc ≤ 10 . Vietnam, 2002 94. [ Vasile Cirtoaje ] Cho a, b, c là các s th c dương. Ch ng minh r ng          a + 1 −1b + 1 −1 + b + 1 −1c + 1 −1 + c + 1 −1a + 1 −1 ≥ 3 .            b    c   c    a   a  b   95. [ Gabriel Dospinescu ] Cho n là s nguyên l n hơn 2. Tìm s th c l n nh t mn và s th c nh nh t M n sao cho v i các s th c dương b t kì x1 , x2 ,..., xn (xem xn = x0 , xn+1 = x1 ), ta có n xi mn ≤ ∑ ≤ Mn . i=1 xi−1 + 2 (n −1) xi + xi +1 96. [ Vasile Cirtoaje ] Cho x, y, z là các s th c dương. Ch ng minh r ng 1 1 1 9 2 2 + 2 2 + 2 2 ≥ 2 . x + xy + y y + yz + z z + zx + x (x + y + z) Gazeta Matematică 97. [ Vasile Cirtoaje ] Cho a, b, c, d là các s th c dương. Ch ng minh r ng 2 (a3 +1)(b3 +1)(c 3 + 1)(d 3 +1) ≥ (1 + abcd )(1 + a 2 )(1 + b 2 )(1 + c 2 )(1 + d 2 ) . Gazeta Matematică 98. Cho a, b, c là các s th c dương. Ch ng minh r ng 4 4 4 4 (a + b) + (b + c) + (c + a) ≥ 4 7 (a + b 4 + c 4 ) . Vietnam TST, 1996 99. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng 1 1 1 1 1 1 + + ≤ + + . 1+ a + b 1+ b + c 1+ c + a 2 + a 2 + b 2 + c Bulgaria, 1997 100. [Tr n Nam Dũng ] Cho a, b, c là các s th c dương th a 21ab + 2bc + 8ca ≤ 12 . Tìm giá tr nh nh t c a bi u th c 1 2 3 + + . a b c Vietnam, 2001 101. [ Titu Vàreescu, Gabriel Dospinescu ] Cho a, b, c, x, y, z là các s th c dương th a mãn ñi u ki n xy + yz + zx = 3 . Ch ng minh r ng a b c ( y + z)+ ( z + x) + ( x + y) ≥ 3 . b+c c+a a +b 102. Cho a, b, c là các s th c dương. Ch ng minh r ng 2 2 2 (b + c − a ) (c + a − b) (a + b − c) 3 2 + 2 + 2 ≥ . (b + c) + a 2 (c + a) + b 2 (a + b) + c 2 5 Japan, 1997 12
  13. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 103. [ Vasile Cirtoaje, Gabriel Dospinescu ] Cho a1 , a2 ,..., an ≥ 0, an = min {a1 , a2 ,..., an } . Ch ng minh r ng  a + a2 + ... + an−1 n a1n + a2 + ... + an − na1a2 ...an ≥ (n −1) 1 n n  − an  .     n −1  104. [ Turkervici ] Cho x, y , z , t là các s th c dương. Ch ng minh r ng x 4 + y 4 + z 4 + t 4 + 2 xyzt ≥ x 2 y 2 + y 2 z 2 + z 2t 2 + x 2 z 2 + y 2t 2 . Kvant 105. Cho a1 , a2 ,..., an là các s th c dương. Ch ng minh r ng  n 2 n  a ≤ ∑ i  ij  ∑ i + j −1ai a j .  i=1  i , j=1   106. Cho a1 , a2 ,..., an , b1 , b2 ,..., bn ∈ (1001, 2002) sao cho a12 + a2 + ... + an = b12 + b2 + ... + bn . 2 2 2 2 Ch ng minh r ng a13 a2 3 a 3 17 + + ... + n ≤ (a12 + a2 + ... + an ) . 2 2 b1 b2 bn 10 TST Singapore 107. [ Titu Vàreescu, Gabriel Dospinescu ] Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng (a 2 + b2 )(b2 + c 2 )(c 2 + a 2 ) ≥ 8(a 2b2 + b2c 2 + c 2 a 2 ) 2 . 108. [ Vasile Cirtoaje ] Cho a, b, c, d là các s th c dương th a mãn ñi u ki n abcd = 1 . Ch ng minh r ng 1 1 1 1 2 + 2 + 2 + 2 ≥1. (1 + a ) (1 + b) (1 + c) (1 + d ) Gazeta Matematică 109. [ Vasile Cirtoaje ] Cho a, b, c là các s th c dương. Ch ng minh r ng a2 b2 c2 a b c 2 2 + 2 2 + 2 2 ≥ + + . b +c c +a a +b b+c c +a a +b Gazeta Matematică 110. [ Gabriel Dospinescu ] Cho n s th c a1 , a2 ,..., an . Ch ng minh r ng 2    a ≤ 2  1≤∑ n ( i ∑ i    a + ... + a j ) . i∈ℕ*    i≤ j≤ TST 2004, Romania 111. [Tr n Nam Dũng ] Cho x1 , x2 ,..., xn ∈ [−1,1] th a mãn ñi u ki n x1 + x2 + ... + xn = 0 . 3 3 3 Tìm giá tr l n nh t c a bi u th c x1 + x2 + ... + xn . 112. [ Gabriel Dospinescu, Călin Popa ] Cho n s th c a1 , a2 ,..., an , n ≥ 2 th a mãn ñi u ki n a1a2 ...an = 1 . Ch ng minh r ng 13
  14. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 2n n a12 + a2 + ... + an − n ≥ 2 2 n −1 (a1 + a2 + ... + an − n) . n −1 113. [ Vasile Cirtoaje ] Cho a, b, c là các s th c dương. Ch ng minh r ng 2a 2b 2c + + ≤ 3. a +b b+c c+a Gazeta Matematică 114. Cho x, y, z là các s th c dương. Ch ng minh r ng  1 1 1  9 ( xy + yz + zx)  2 + 2 + 2 ≥ .  ( x + y ) ( y + z) ( z + x)  4 Iran, 1996 115. [ Cao Minh Quang ] Cho x1 , x2 ,..., xn là các s th c dương th a mãn ñi u ki n n ∏(3x +1) ≤ 2 i=1 i n . Ch ng minh r ng n 1 n ∑ 6 x +1 ≥ 3 . i=1 i 116. [ Suranyi ] Cho a1 , a2 ,..., an là các s th c dương. Ch ng minh r ng (n −1)(a1n + a2 + ... + an ) + na1a2 ...an ≥ (a1 + a2 + ... + an )(a1n−1 + a2 −1 + ... + ann−1 ) . n n n Miklos Schweitzer Competition 117. [ Gabriel Dospinescu ] Cho x1 , x2 ,..., xn > 0 th a mãn ñi u ki n x1 x2 ...xn = 1 . Ch ng minh r ng n ∑ (x − x ) ≥ ∑ x 2 2 i j i −n . 1≤i≤ j≤n i =1 A generazation of Tukervici’s Inequality 1 118. [ Vasile Cirtoaje ] Cho a1 , a2 ,..., an < và a1 + a2 + ... + an = 1, n > 2 . Tìm giá tr n −1 nh nh t c a bi u th c n a1a2 ...an ∑ 1−(n −1) ai . i=1 119. [ Vasile Cirtoaje ] Cho a1 , a2 ,..., an ∈ [0,1) th a mãn ñi u ki n a12 + a2 + ... + an 2 2 3 a= ≥ . n 3 Ch ng minh r ng a1 a a na 2 + 2 2 + ... + n 2 ≥ . 1− a1 1− a2 1− an 1− a 2 120. [ Vasile Cirtoaje, Mircea Lascu ] Cho a, b, c, x, y, z là các s th c dương th a mãn ñi u ki n 14
  15. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang (a + b + c)( x + y + z ) = (a 2 + b 2 + c 2 )( x 2 + y 2 + z 2 ) = 4 . Ch ng minh r ng 1 abcxyz < . 36 121. [ Gabriel Dospinescu ] Cho x1 , x2 ,..., xn > 0, n > 2 th a mãn ñi u ki n x1 x2 ...xn = 1 . Tìm h ng s kn nh nh t sao cho 1 1 1 + + ... + ≤ n −1 . 1 + kn x1 1 + kn x2 1 + kn xn Mathlinks Contest 122. [ Vasile Cirtoaje, Gabriel Dospinescu ] Cho x1 , x2 ,..., xn > 0, n > 2 th a mãn ñi u ki n x12 + x2 + ... + xn = 1 . Tìm h ng s kn l n nh t sao cho 2 2 (1− x1 )(1− x2 )...(1− xn ) ≥ kn x1 x2 ...xn . 123. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng 1 1 1 3 + 3 + 3 ≥ . a (b + c ) b (c + a ) c (a + b) 2 3 IMO, 1995 124. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng ab bc ca + 5 + 5 ≤ 1. a + b + ab b + c + bc c + a 5 + ca 5 5 5 IMO Shortlist, 1996 125. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng 1 + ab 2 1 + bc 2 1 + ca 2 18 3 + 3 + 3 ≥ 3 . c a b a + b3 + c3 Hong Kong, 2000 126. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng 1 1 1 1 2 + 2 + 2 ≤ . (a +1) + b + 1 (b +1) + c + 1 (c +1) + a + 1 2 2 2 2 127. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng     a −1 + 1 b −1 + 1 c −1 + 1  ≤ 1 .       b   c   a IMO, 2000 128. Cho a, b, c là các s th c dương th a mãn ñi u ki n abc = 1 . Ch ng minh r ng a3 b3 c3 3 + + ≥ . (1 + b)(1 + c) (1 + a)(1 + c) (1 + a )(1 + b) 4 IMO Shortlist, 1998 129. Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng 15
  16. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang ab bc ca 1 + + ≤ . 1+ c 1+ a 1+ b 4 130. Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng a 2 + b 2 + c 2 + 2 3abc ≤ 1 . Poland, 1999 131. Cho a, b, c là các s th c dương th a mãn ñi u ki n a 2 + b 2 + c 2 = 1 . Ch ng minh r ng 1 a +b+c + ≥4 3. abc Macedonia, 1999 132. Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng ab + c + bc + a + ca + b ≥ 1 + ab + bc + ca . 133. Cho a, b, c là các s th c dương th a mãn ñi u ki n a + b + c = 1 . Ch ng minh r ng (1 + a)(1 + b)(1 + c) ≥ 8 (1− a )(1− b)(1− c) . Russia, 1991 134. Cho a, b là các s th c dương th a mãn ñi u ki n a + b = 1 . Ch ng minh r ng a2 b2 1 + ≥ . a +1 b +1 3 Hungary, 1996 135. Cho các s th c x, y . Ch ng minh r ng 2 3( x + y + 1) + 1 ≥ 3 xy . Columbia, 2001 136. Cho a, b, c là các s th c dương. Ch ng minh r ng  1 1 a b 2 (a + b) +  ≥ 3 + 3 . a b  3    b a Czech and Slovakia, 2000 137. Cho a, b, c ≥ 1 . Ch ng minh r ng a −1 + b −1 + c −1 ≤ c (ab + 1) . Hong Kong, 1998 138. Cho x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = xyz . Ch ng minh r ng 1 1 1 3 + + ≤ . 1+ x 2 1+ y 2 1+ z 2 2 Korea, 1998 139. Cho a, b, c là các s th c dương. Ch ng minh r ng a b c + + ≥1 . 2 2 2 a + 8bc b + 8ca c + 8ab IMO, 2001 16
  17. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 140. Cho a, b, c, d là các s th c dương. Ch ng minh r ng a b c d 2 + + + ≥ . b + 2c + 3d c + 2d + 3a d + a + 3b a + 2b + 3c 3 IMO Shortlist, 1993 141. Cho a, b, c, d là các s th c dương th a mãn ñi u ki n ab + bc + cd + da = 1 . Ch ng minh r ng a3 b3 c3 d3 1 + + + ≥ . b+c +d c +d +a d +a +b a +b+c 3 IMO Shortlist, 1990 142. Cho a, b, c là các s th c dương. Ch ng minh r ng a2 b2 c2 bc ca ab 2 + 2 + 2 ≥1 ≥ 2 + 2 + 2 . a + 2bc b + 2ca c + 2ab a + 2bc b + 2ca c + 2ab Romania, 1997 143. Cho a, b, c là các s th c dương. Ch ng minh r ng a 3 b3 c3 + + ≥ a +b +c . bc ca ab Canada, 2002 144. Cho a, b, c là các s th c dương. Ch ng minh r ng 1 1 1 1 3 3 + 3 3 + 3 3 ≤ . a + b + abc b + c + abc c + a + abc abc USA, 1997 145. Cho a, b, c là các s th c dương th a mãn ñi u ki n a2 + b2 + c2 = 3 . Ch ng minh r ng 1 1 1 3 + + ≥ . 1 + ab 1 + bc 1 + ca 2 Belarus, 1999 146. Cho a, b, c là các s th c dương. Ch ng minh r ng a b c a +b b + c + + ≥ + +1. b c a b+c a +b Belarus, 1998 3 147. Cho a, b, c ≥ − , a + b + c = 1 . Ch ng minh r ng 4 a b c 9 2 + 2 + 2 ≤ . a + 1 b + 1 c + 1 10 Poland, 1996 148. Cho x, y, z là các s th c dương th a mãn ñi u ki n xyz = 1 . Ch ng minh r ng x9 + y 9 y9 + z9 z 9 + x9 + 6 + 6 ≥2. x6 + x3 y 3 + y 6 y + y 3 z 3 + z 6 z + z 3 z 3 + x 6 Roamania, 1997 149. Cho x ≥ y ≥ z > 0 . Ch ng minh r ng 17
  18. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang x2 y y2 z z 2 x + + ≥ x2 + y2 + z 2 . z x y Vietnam, 1991 150. Cho a ≥ b ≥ c > 0 . Ch ng minh r ng a 2 − b 2 c 2 − b2 a 2 − c 2 + + ≥ 3a − 4b + c . c a b Ukraine, 1992 151. Cho x, y, z là các s th c dương. Ch ng minh r ng ( xyz x + y + z + x 2 + y 2 + z 2 ) ≤ 3+ 3 . (x 2 + y + z )( xy + yz + zx ) 2 2 9 Hong Kong, 1997 152. Cho a1 , a2 , ..., an > 0 và a1 + a2 + ... + an < 1 . Ch ng minh r ng a1a2 ...an (1− a1 − a2 − ... − an ) 1 ≤ n+1 . (a1 + a2 + ... + an )(1− a1 )(1− a2 )...(1− an ) n IMO Shortlist, 1998 153. Cho hai s th c a, b , a ≠ 0 . Ch ng minh r ng 1 b a 2 + b2 + + ≥ 3. a2 a Austria, 2000 154. Cho a1 , a2 , ..., an > 0 . Ch ng minh r ng a12 a2 2 a2 a2 + + ... + n−1 + n ≥ a1 + a2 + ... + an . a2 a3 an a1 China, 1984 155. Cho x, y, z là các s th c dương th a mãn ñi u ki n xyz = 1 . Ch ng minh r ng x 2 + y 2 + z 2 + x + y + z ≥ 2 ( xy + yz + zx) . Russia, 2000 156. Cho x, y, z là các s th c dương th a mãn ñi u ki n xyz ≥ xy + yz + zx . Ch ng minh r ng xyz ≥ 3( x + y + z ) . India, 2001 1 1 1 157. Cho x, y, z > 1 và + + = 2 . Ch ng minh r ng x y z x + y + z ≥ x −1 + y −1 + z −1 . IMO, 1992 158. Cho a, b, c là các s th c dương th a mãn ñi u ki n ab +bc +ca =1. Ch ng minh r ng 1 1 1 1 3 + 6b + 3 + 6c + 3 + 6a ≤ . a b c abc 18
  19. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang IMO Shortlist, 2004 159. Cho x ≥ 2, y ≥ 2, z ≥ 2 . Ch ng minh r ng ( x3 + y )( y 3 + z )( z 3 + x) ≥ 125 xyz . Saint Petersburg, 1997 160. Cho a, b, c, d là các s th c dương th a mãn ñi u ki n c 2 + d 2 = (a 2 + b 2 ) . Ch ng 3 minh r ng a 3 b3 + ≥ 1. c d Singapore, 2000 161. Cho a, b, c là các s th c dương. Ch ng minh r ng a b c + + ≥1. b + 2c c + 2a a + 2b Czech – Slovak Match, 1999 162. Cho a, b, c là các s th c dương. Ch ng minh r ng ab bc ca a b c + + ≥ + + . c (c + a) a (a + b) b (b + c) c + a b + a c + b Moldova, 1999 163. Cho a, b, c, d là các s th c dương. Ch ng minh r ng a +c b+d c +a d +b + + + ≥ 4. a+b b+c c +d d +a Baltic way, 1995 164. Cho x, y, u , v là các s th c dương. Ch ng minh r ng xy + xu + uy + uv xy uv ≥ + . x + y +u +v x+ y u +v Poland, 1993 165. Cho a, b, c là các s th c dương. Ch ng minh r ng  a  b  c    1 + 1 + 1 +  ≥ 2 1 + a + b + c  .   b  c  a             3 abc   APMO, 1998 166. Cho x, y, z là các s th c không âm th a mãn ñi u ki n x + y + z =1. Ch ng minh r ng 4 x2 y + y 2 z + z 2 x ≤ . 27 Canada, 1999 167. Cho a, b, c, d , e, f là các s th c dương th a mãn ñi u ki n 1 a + b + c + d + e + f = 1, ace + bdf ≥ . 108 Ch ng minh r ng 19
  20. 500 Bài Toán B t ð ng Th c Ch n L c Cao Minh Quang 1 abc + bcd + cde + def + efa + fab ≤ . 36 Poland, 1998 168. Cho a, b, c ∈ [0,1] . Ch ng minh r ng a 2 + b 2 + c 2 ≤ a 2b + b 2 c + c 2 a + 1 . Italy, 1993 169. Cho a, b, c ≥ 0, a + b + c ≥ abc . Ch ng minh r ng a 2 + b 2 + c 2 ≥ abc . Ireland, 1997 170. Cho a, b, c ≥ 0, a + b + c ≥ abc . Ch ng minh r ng a 2 + b 2 + c 2 ≥ 3abc . BMO, 2001 171. Cho x, y, z là các s th c dương th a mãn ñi u ki n x + y + z = xyz . Ch ng minh r ng xy + yz + zx ≥ 9 ( x + y + z ) . Belarus, 1996 172. Cho x1 , x2 , x3 , x4 là các s th c dương th a mãn ñi u ki n x1 x2 x3 x4 = 1 . Ch ng minh r ng   1 1 1 1  x13 + x2 + x3 + x4 ≥ max  x1 + x2 + x3 + x4 , + + +  . 3 3 3      x1 x2 x3 x4    Iran, 1997 173. Cho a, b, c, x, y, z là các s th c dương. Ch ng minh r ng 3 a 3 b3 c 3 (a + b + c ) + + ≥ . x y z 3( x + y + z ) Belarus TST, 2000 174. Cho a, b, c, d là các s th c dương th a mãn ñi u ki n 1 1 1 1 4 + 4 + 4 + =1. 1+ a 1+ b 1+ c 1+ d 4 Ch ng minh r ng abcd ≥ 3 . Latvia, 2002 175. Cho x, y, z > 1 . Ch ng minh r ng 2 +2 yz 2 + 2 zx 2 +2 xy xy + yz + zx xx yy zz ≥ ( xyz ) . Proposed for 1999 USAMO 176. Cho c ≥ b ≥ a ≥ 0 . Ch ng minh r ng (a + 3b)(b + 4c)(c + 2a) ≥ 60abc . Turkey, 1999 20
Đồng bộ tài khoản