Ánh xạ tuyến tính

Chia sẻ: kieudinhtuan

Tham khảo tài liệu 'ánh xạ tuyến tính', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Bạn đang xem 7 trang mẫu tài liệu này, vui lòng download file gốc để xem toàn bộ.

Nội dung Text: Ánh xạ tuyến tính

Đ I S CƠ B N
(ÔN THI TH C SĨ TOÁN H C)
Bài 15. Ánh x tuy n tính
PGS TS M Vinh Quang

Ngày 28 tháng 2 năm 2006


1 Đ nh nghĩa và ví d
1.1 Đ nh nghĩa
Cho V và U là hai không gian véctơ, ánh x f : V → U là ánh x tuy n tính n u f th a mãn
2 tính ch t sau:

(i) V i m i α, β ∈ V : f (α + β) = f (α) + f (β)

(ii) V i m i a ∈ R, α ∈ V : f (aα) = af (α)

M t ánh x tuy n tính f : V → V g i là m t phép bi n đ i tuy n tính c a V .
Như v y, đ ki m tra ánh x f : V → U có là ánh x tuy n tính không, ta c n ph i ki m
tra f có các tính ch t (i) và (ii) không. B n đ c có th d dàng t ki m tra các ví d sau:

1.2 Các ví d
Ví d 1. Ánh x không:
0 : V −→ U
α −→ 0(α) = 0
là ánh x tuy n tính.

Ví d 2. Ánh x đ ng nh t:
id : V −→ V
α −→ id (α) = α
là ánh x tuy n tính.

Ví d 3. Ánh x đ o hàm:
θ : R[x] −→ R[x]
f (x) −→ θ(f ) = f (x)
là ánh x tuy n tính.



1
Ví d 4. Phép chi u

p : R3 −→ R2
(x1 , x2 , x3 ) −→ p(x1 , x2 , x3 ) = (x1 , x2 )

là ánh x tuy n tính.

D ng t ng quát c a m t ánh x tuy n tính f : Rm → Rn đư c cho trong bài t p 1.


2 Các tính ch t cơ b n c a ánh x tuy n tính
Cho U, V là các không gian véctơ, và f : V → U là ánh x tuy n tính. Khi đó:

a. f (0V ) = 0U , f (−α) = −f (α)

b. V i m i a1 , a2 , . . . , an ∈ R, α1 , α2 , . . . , αn ∈ V ta có

f (a1 α1 + a2 α2 + . . . + an αn ) = a1 f (α1 ) + a2 f (α2 ) + . . . + an f (αn )

c. Ánh x tuy n tính bi n h PTTT thành h PTTT. T c là n u α1 , α2 , . . . , αn là h PTTT
trong V thì f (α1 ), f (α2 ), . . . , f (αn ) là h PTTT trong U .
Th t v y, n u α1 , α2 , . . . , αn là h PTTT thì t n t i a1 , a2 , . . . , an ∈ R không đ ng th i
b ng không sao cho a1 α1 +a2 α2 +. . .+an αn = 0. Do đó f (a1 α1 +a2 α2 +. . .+an αn ) = f (0)
suy ra a1 f (α1 ) + a2 f (α2 ) + . . . + an f (αn ) = 0 mà a1 , a2 , . . . , an không đ ng th i b ng
không nên f (α1 ), f (α2 ), . . . , f (αn ) PTTT.

d. Ánh x tuy n tính không làm tăng h ng c a m t h véctơ, t c là v i m i α1 , . . . , αn ∈ V
rank{α1 , . . . , αn } ≥ rank{f (α1 ), . . . , f (αn )}.
Th t v y, gi s f (αi1 , . . . , f (αik ) là m t h con ĐLTT t i đ i c a h {f (α1 ), . . . , f (αn )}
(do đó rank{f (α1 ), . . . , f (αn )} = k), theo tính ch t c., h véctơ αi1 , . . . , αik ĐLTT, do đó
h con ĐLTT t i đ i c a h α1 , . . . , αn có không ít hơn k véctơ, t c là rank{α1 , . . . , αn } ≥ k
= rank{f (α1 ), . . . , f (αn )}.


3 Đ nh lý cơ b n v s xác đ nh c a ánh x tuy n tính
Đ nh lý 3.1. Cho V là không gian véctơ n chi u ( dimV = n), α1 , . . . , αn (α) là cơ s tùy ý
c a V , U là không gian véctơ tùy ý và β1 , . . . , βn là h véctơ tùy ý c a U . Khi đó t n t i duy
nh t m t ánh x tuy n tính f : V → U th a mãn f (αi ) = βi v i m i i = 1, 2, . . . , n.

Ch ng minh. Tính duy nh t. Gi s có 2 ánh x tuy n tính f, g : V → U th a mãn đi u
ki n c a đ nh lý. Khi đó v i m i x ∈ V ⇒ x = a1 α1 + . . . + an αn , ta có

f (x) = f (a1 α1 + . . . + an αn )
= a1 f (α1 ) + . . . + an f (αn )
= a1 g(α1 ) + . . . + an g(αn )
= g(a1 α1 + . . . + an αn ) = g(x)

V y f = g.

2
S t n t i. V i m i x ∈ V , x = a1 α1 + . . . + an αn , ta đ nh nghĩa ánh x f : V → U , như sau:
f (x) = a1 β1 + . . . + an βn . Rõ ràng f là ánh x tuy n tính th a mãn đi u ki n c a đ nh lý.


T đ nh lý này, ta th y r ng m t ánh x tuy n tính hoàn toàn đư c xác đ nh khi bi t nh
c a m t cơ s , và đ cho m t ánh x tuy n tính, ta ch c n cho nh c a m t cơ s là đ .


4 Ma tr n c a ánh x tuy n tính
4.1 Đ nh nghĩa và ví d
Cho V và U là các không gian véctơ, α1 , . . . , αn (α) là cơ s c a V , β1 , . . . , βm (β) là cơ s c a
U . Vì f (αi ) ∈ U nên f (αi ) bi u th tuy n tính đư c qua cơ s (β) nên ta có:

f (α1 ) = a11 β1 + a12 β2 + . . . + a1m βm
f (α2 ) = a21 β1 + a22 β2 + . . . + a2m βm
··· ··· ························
f (αn ) = an1 β1 + an2 β2 + . . . + anm βm

Ma tr n  
a11 a21 . . . an1
 a12 a22 . . . an2 
A=
 
.
. .
. .. .
. 
 . . . . 
a1m a2m . . . anm
g i là ma tr n c a f trong c p cơ s (α), (β) và kí hi u là Af /(α),(β)
Trư ng h p đ c bi t, khi f là phép bi n đ i tuy n tính c a V , f : V → V và (β) ≡ (α) thì
ma tr n c a f trong c p cơ s (α), (α) đư c g i là ma tr n c a f trong cơ s (α) và kí hi u là
Af /(α)

Ví d 1. Cho ánh x tuy n tính f : R2 → R3

f (x1 , x2 ) = (x1 + 2x2 , x1 − x2 , −x2 )

Tìm ma tr n c a f trong c p cơ s (α), (β) (ma tr n Af /(α),(β) ) v i các cơ s (α), (β) như
sau:
(α) : α1 = (1, 1), α2 = (1, 0),
(β) : β1 = (1, 1, 1), β2 = (−1, 2, 1), β3 = (1, 3, 2)

Gi i. Gi s

f (α1 ) = a1 β1 + a2 β2 + a3 β3 (1)
f (α2 ) = b1 β1 + b2 β2 + b3 β3 (2)

Khi đó, theo đ nh nghĩa, ma tr n c a f trong c p cơ s (α), (β) là
 
a1 b1
Af /(α),(β) =  a2 b2 
a3 b3


3
Ta c n gi i các phương trình véctơ (1), (2) đ tìm a1 , a2 , a3 và b1 , b2 , b3 . Các phương
trình (1), (2) tương đương v i các h phương trình tuy n tính mà ma tr n các h s m
r ng c a chúng là ma tr n 
  sau: 
1 −1 1 3 1 1 −1 1 3 1
 1 2 3 0 1  −→  0 3 2 −3 0 
1  1 2 −1 0  0 2 1 −4 −1 
1 −1 1 3 1 1 −1 1 3 1
−→  0 1 1 1 1  −→  0 1 1 1 1 
0 2 1 −4 −1 0 0 −1 −6 −3
H 1): a3 = 6, a2 = 1 − a3 = −5, a1 = 3 + a2 − a3 = −8
H 2): b3 = 3, b2 = 1 − b3 −2, b1 = 1 + 2 − b3 = −4
 =  b
a1 b 1 −8 −4
V y Af /(α),(β) =  a2 b2  =  −5 −2 
a3 b 3 6 3


Nh c l i r ng cơ s chính t c c a không gian Rn (ký hi u ( n )) là cơ s :
e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1) ( n )
B n đ c có th d dàng ki m tra ví d sau:
Ví d 2. Cho ánh x tuy n tính f : Rn → Rm đư c cho b i công th c (xem bài t p 1)
f (x1 , . . . , xn ) = (a11 x1 + . . . + a1n xn , a21 x1 + . . . + a2n xn , . . . , am1 x1 + . . . + amnxn )
Khi đó, ma tr n c a f trong c p cơ s ( n ), ( m ) là:
 
a11 a12 . . . a1n
 a21 a22 . . . a2n 
Af / n , m =  .
 
. .. .
 . . . 
. . . . 
am1 am2 . . . amn
Ch ng h n, ánh x tuy n tính f : R2 → R3 trong ví d 1 có ma tr n trong c p cơ s
( 2 ), ( 3 ) là  
1 2
Af / 2 , 3 =  1 −1 
0 −1

4.2 Bi u th c t a đ c a ánh x tuy n tính
Cho U, V là các KGVT, và α1 , . . . , αn (α), β1 , . . . , βm (β) l n lư t là các cơ s c a V và U .
Cho f : V → U là ánh x tuy n tính. A = Af /(α),(β) là ma tr n c a f trong c p cơ s (α), (β).
V i m i véctơ x ∈ V , gi s :
x/(α) = (x1 , x2 , . . . , xn ), f (x)/(β) = (y1 , y2 , . . . , ym )
Khi đó, ta có công th c sau g i là bi u th c t a đ c a ánh x tuy n tính f :
   
y1 x1
 y2   x2 
= A.  . 
   
 . 
 . 
.  . 
.
ym xn

4
N u ta ký hi u [x]/(α) là t a đ c a véctơ x trong cơ s (α) vi t theo c t, thì công th c trên có
th vi t l i ng n g n như sau:

[f (x)]/(β) = Af /(α),(β) .[x]/(α)

Trư ng h p đ c bi t, khi f : V → V là phép bi n đ i tuy n tính, α1 , . . . , αn (α) là cơ s c a
V , ta có:
[f (x)]/(α) = Af /(α) .[x]/(α)


4.3 Ma tr n c a ánh x tuy n tính trong hai c p cơ s khác nhau
Cho V, U là các KGVT, α1 , . . . , αn (α) và α1 , . . . , αn (α ) là các cơ s c a V , β1 , . . . , βm (β) và
β1 , . . . , βm (β ) là các cơ s c a U . Cho ánh x tuy n tính f : V → U . Khi đó, ta có công th c
dư i đây cho th y s liên h gi a ma tr n c a f trong c p cơ s (α ), (β ) v i ma tr n c a f
trong c p cơ s (α), (β):
−1
Af /(α ),(β ) = Tββ .Af /(α),(β) .Tαα
trong đó, Tαα là ký hi u ma tr n đ i cơ s t cơ s (α) sang cơ s (α ).
Trư ng h p đ c bi t, khi f : V → V là phép bi n đ i tuy n tính và α1 , . . . , αn (α) và
α1 , . . . , αn (α ) là hai cơ s c a V , ta có:
−1
Af /(α ) = Tαα .Af /(α) .Tαα


5 H t nhân và nh
5.1 Các khái ni m cơ b n
Cho V, U là các không gian véctơ, f : V → U là ánh x tuy n tính.

• Ký hi u: Kerf = {x ∈ V |f (x) = 0} ⊂ V
Khi đó, d a vào tiêu chu n KGVT con, ta có th ch ng minh đư c Kerf là KGVT con
c a V , g i là h t nhân c a ánh x tuy n tính f .

• Ký hi u Imf = {f (x)|x ∈ V } ⊂ U
Imf cũng là m t KGVT con c a U , g i là nh c a ánh x tuy n tính f .

5.2 Nh n xét
• Đ xác đ nh h t nhân c a ánh x tuy n tính f : V → U , ta s d ng bi u th c t a đ c a
f (xem m c 2), c th :
Ch n cơ s α1 , . . . , αn (α) và β1 , . . . , βm (β) c a V và U . Khi đó, ta có:

[f (x)/(β) = Af /(α),(β) .[x]/(α)




5
do đó:

x ∈ Kerf ⇐⇒ f (x) = 0
 
0
 0 
⇐⇒ [f (x)]/(β) =
 
.
. 
 . 
0
 
0
 0 
⇐⇒ A.[x]/(α) = (∗)
 
.
. 
 . 
0

Như v y, x ∈ Kerf khi và ch khi t a đ c a x trong cơ s (α) [x]/(α) ) là nghi m c a
h phương trình tuy n tính thu n nh t (∗) (v i A = Af /(α),(β) .)
T đó, đ tìm cơ s c a h t nhân Kerf , ta làm như sau: Tìm ma tr n c a ftrong c p cơ
  
x1 0
 .   . 
s (α), (β) nào đó, A = Af /(α),(β) . Gi i h phương trình A.  .  =  .  (∗), tìm h
. .
xn 0
nghi m c a h (∗). T p t t c các véctơ thu c V sao cho t a đ c a véctơ đó trong cơ s
(α) là nghi m cơ b n c a h (∗) s làm thành m t cơ s c a Kerf . Trư ng h p đ c bi t,
n u f : Rn → Rm là ánh x tuy n tính và A là ma tr n c a f trong c p cơ s chính t c
(A = Af /( n ),( m ) ) thì h t nhân c a f chính là không gian con các nghi m c a h phương
   
x1 0
 .   . 
trình tuy n tính thu n nh t A.  .  =  .  và cơ s c a Kerf chính là h nghi m
. .
xn 0
cơ b n c a h trên.
B n đ c s th y rõ cách tìm Kerf qua ph n bài t p.
• Đ tìm nh c a ánh x tuy n tính f : V → U ta d a vào nh n xét sau:
N u α1 , . . . , αn là h sinh c a V thì f (α1 ), . . . , f (αn ) là h sinh c a Imf . Th t v y, v i
m i y ∈ Imf , t n t i x ∈ V đ y = f (x). Vì x ∈ V nên t n t i a1 , . . . , an ∈ R đ
x = a1 α1 + . . . + an αn . Khi đó

y = f (x) = f (a1 α1 + . . . + an ) = a1 f (α1 ) + . . . + an f (α)

V y, f (α1 ), . . . , f (αn ) là h sinh c a Imf .
Như v y, đ tìm cơ s c a Imf , ta tìm cơ s α1 , . . . , αn c a V , theo nh n xét trên,
Imf = f (α1 ), . . . , f (α) , do đó h con ĐLTT t i đ i c a h f (α1 ), . . . , f (αn ) là cơ s c a
Imf

5.3 M i liên h gi a s chi u c a h t nhân và nh
Đ nh lý 5.1. Cho ánh x tuy n tính f : V → U . Khi đó, ta có: dim Ker f + dim Im f = dim V
Ch ng minh. Gi s dimV = n, dimKerf = k (k ≤ n) và gi s α1 , . . . , αk là cơ s c a Kerf .
Vì α1 , . . . , αk là h véctơ ĐLTT c a V nên ta có th b sung thêm n − k véctơ đ đư c h
α1 , . . . , αk , αk+1 , . . . , αn là cơ s c a V . Ta ch ng minh f (αk+1 ), . . . , f (αn ) là cơ s c a Imf .

6
Th t v y, v i m i y ∈ Imf , t n t i x ∈ V đ f (x) = y, vì x ∈ V nên x = a1 α1 + . . . +
ak αk + ak+1 αk+1 + . . . + an αn . Do đó,

y = f (x) = a1 f (α1 )+. . .+ak f (αk )+ak+1 f (αk+1 )+. . .+an f (αn ) = ak+1 f (αk+1 )+. . .+an f (αn )

vì f (α1 ) = . . . = f (αk ) = 0. Đi u này ch ng t f (αk+1 ), . . . , f (αn ) là h sinh c a Imf .
Bây gi , gi s

ak+1 f (αk+1 ) + . . . + an f (αn ) = 0
⇒ f (ak+1 αk+1 + . . . + an αn ) = 0
⇒ ak+1 αk+1 + . . . + an αn ∈ Kerf
⇒ ak+1 αk+1 + . . . + an αn = a1 α1 + . . . + ak αk

(vì α1 , . . . , αk là cơ s c a Kerf ). Do đó −a1 α1 − . . . − ak αk + ak+1 αk+1 + . . . + an αn = 0 suy
ra ai = 0 v i m i i.
V y f (αk+1 ), . . . , f (αn ) là cơ s ĐLTT do đó là cơ s c a Im f nên dim Im f = n − k. Ta có
dim Ker f + dim Im f = k + (n − k) = n = dim V .
S chi u c a Im f còn đư c g i là h ng c a ánh x tuy n tính f , ký hi u là rank f . S chi u
c a Ker f còn đư c g i là s khuy t c a ánh x tuy n tính f , ký hi u là def(f ). Như v y, ta
có: rank(f ) = dim Im f, def(f ) = dim Ker f và rank(f ) + def(f ) = dim V


6 Đơn c u, toàn c u, đ ng c u
6.1 Các khái ni m cơ b n
Cho U, V là các KGVT, và f : V → U là ánh x tuy n tính. Khi đó:

• f g i là đơn c u n u f là đơn ánh.

• f g i là toàn c u n u f là toàn ánh.

• f g i là đ ng c u n u f là song ánh.

T đ nh nghĩa, ta có ngay tích c a các đơn c u, toàn c u, đ ng c u l i là các đơn c u, toàn
c u, đ ng c u. N u f : V → U là m t đ ng c u thì f có ánh x ngư c f −1 : U → V cũng là
m t đ ng c u.
Hai không gian véctơ U, V g i là đ ng c u n u t n t i m t đ ng c u f : V → U . D th y
r ng quan h đ ng c u là quan h tương đương.

6.2 Các đ nh lý v đơn c u, toàn c u, đ ng c u
Đ nh lý 6.1. Hai không gian véctơ V, U đ ng c u v i nhau khi và ch khi dim V = dim U

Đ nh lý 6.2. Cho V, U là các không gian véctơ, dim V = dim U và f : V → U là ánh x tuy n
tính. Khi đó, các kh ng đ nh sau là tương đương:

(i) f là đơn c u

(ii) f là toàn c u

(iii) f là đ ng c u

7
Đ nh lý 6.3. Cho ánh x tuy n tính f : V → U . Khi đó:

(i) f là đơn c u khi và ch khi Ker f = {0}, khi và ch khi dim Im f = dim V

(ii) f là toàn c u khi và ch khi Im f = U , khi và ch khi dim Im f = dim U .

N u f : V → U là ánh x tuy n tính thì dim Im f = rank f = rank A, trong đó A là ma
tr n c a f trong c p cơ s (α), (β) b t kỳ. Do đó, đ ki m tra xem f có là đơn c u, toàn
c u hay không, ta tìm ma tr n c a f trong c p cơ s (α), (β) nào đó r i tìm rank A. N u
rank A = dim V thì f là đơn c u, còn n u rank A = dim U thì f là toàn c u.

6.3 S đ ng c u c a không gian các ánh x tuy n tính và không
gian các ma tr n
Ký hi u Hom(V, U ) là t p các ánh x tuy n tính f : V → U . Trong Hom(V, U ) ta đ nh nghĩa
hai phép toán như sau:
• Phép c ng: ∀f, g ∈ Hom(V, U ), f + g : V −→ U
x −→ (f + g)(x) = f (x) + g(x)

• Phép nhân: ∀a ∈ R, f ∈ Hom(V, U ), (af ) : V −→ U
x −→ (af )(x) = af (x)

khi đó Hom(V, U ) cùng v i 2 phép toán trên làm thành m t KGVT, g i là không gian các ánh
x tuy n tính t V đ n U .
Đi u thú v là không gian Hom(V, U ) đ ng c u v i không gian các ma tr n nh đ ng c u
trong đ nh lý sau:

Đ nh lý 6.4. Cho V, U là các KGVT, dim V = n, dim U = m và cho α1 , . . . , αn (α), β1 , . . . , βm (β)
l n lư t là các cơ s c a V và U . Khi đó, ánh x :

θ : Hom(V, U ) −→ Mm,n (R)
f −→ θ(f ) = Af /(α),(β)

là m t đ ng c u.

Nh đ ng c u này, vi c nghiên c u các ánh x tuy n tính d n đ n vi c nghiên c u các ma
tr n và ngư c l i. B n đ c s th y rõ ph n này qua ph n bài t p. 1




1
Đánh máy: LÂM H U PHƯ C, Ngày: 22/02/2006


8
Đề thi vào lớp 10 môn Toán |  Đáp án đề thi tốt nghiệp |  Đề thi Đại học |  Đề thi thử đại học môn Hóa |  Mẫu đơn xin việc |  Bài tiểu luận mẫu |  Ôn thi cao học 2014 |  Nghiên cứu khoa học |  Lập kế hoạch kinh doanh |  Bảng cân đối kế toán |  Đề thi chứng chỉ Tin học |  Tư tưởng Hồ Chí Minh |  Đề thi chứng chỉ Tiếng anh
Theo dõi chúng tôi
Đồng bộ tài khoản