Bài 2: phương trình đẳng cấp với sin và cos

Chia sẻ: Thanh Tran | Ngày: | Loại File: PDF | Số trang:13

0
33
lượt xem
5
download

Bài 2: phương trình đẳng cấp với sin và cos

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Cách 3. Phân tích thành phương trình tích 2. Các bài t p m u minh h a Bài 1. Gi i phương trình: 3sin 3x − 3 cos 9 x = 1 + sin 3 3x Giải 3sin 3x − 3 cos 9 x = 1 + 4 sin 3 3 x ⇔ ( 3sin 3x − 4 sin 3 3 x ) − 3 cos 9 x = 13 ⇔ sin 9 x − 3 cos 9 x = 1 ⇔ 1 sin 9 x − cos 9 x = 1 ⇔ sin 9 x − π = 1 2 2 2 3 2 9 x − π = π + 2 k π x = π

Chủ đề:
Lưu

Nội dung Text: Bài 2: phương trình đẳng cấp với sin và cos

  1. Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx Bài 1. PHƯƠNG TRÌNH NG C P B C NH T V I SINX, COSX 1. Phương pháp chung: a sin x + b cos x = c ; a 2 + b 2 > 0 (1) Cách 1. (1) ⇔ c = a sin x + b cos x = cos ( x − α ) 2 2 2 2 a +b a +b a + b2 2 V i a = sin α ; b = cos α ; c = cos β ⇒ x = α ± β + 2k π 2 2 2 2 a +b a +b a + b2 2 Chú ý: (1) có nghi m ⇔ c 2 ≤ a 2 + b 2 Cách 2. Xét cos x = 0 là nghi m c a (1) ⇔ b + c = 0 2 2 Xét b + c ≠ 0 . t t = tan x thì sin x = 2t 2 ; cos x = 1 − t 2 . Khi ó 2 1+ t 1+ t (1) ⇔ f ( t ) = ( c + b ) t 2 − 2at + ( c − b ) = 0 Cách 3. Phân tích thành phương trình tích 2. Các bài t p m u minh h a Bài 1. Gi i phương trình: 3sin 3x − 3 cos 9 x = 1 + sin 3 3x Gi i 3sin 3x − 3 cos 9 x = 1 + 4 sin 3 3 x ⇔ ( 3sin 3x − 4 sin 3 3 x ) − 3 cos 9 x = 1 ⇔ sin 9 x − 3 cos 9 x = 1 ⇔ 1 sin 9 x − 2 2 3 cos 9 x = 1 ⇔ sin 9 x − π = 1 2 3 2 ( ) 9 x − π = π + 2 k π  x = π + 2k π  3 6  18 9 ( ⇔ ⇔ k ∈ ») π = 5π + 2 k π 7 π + 2k π 9 x − x =  3 6  54 9 Bài 2. Gi i phương trình: cos 7 x.cos 5 x − 3 sin 2 x = 1 − sin 7 x.sin 5 x (1) Gi i (1) ⇔ ( cos 7 x.cos 5 x + sin 7 x.sin 5 x ) − 3 sin 2 x = 1 ⇔ cos ( 7 x − 5 x ) − 3 sin 2 x ⇔ cos 2 x − 3.sin 2 x = 1 3 ⇔ 1 cos 2 x − sin 2 x = 1 ⇔ cos π cos 2 x − sin π sin 2 x = 1 2 2 2 3 3 2 ( 2 ) ⇔ cos 2 x + π = 1 ⇔ 2 x + π = ± π + 2k π ⇔ x = k π ∨ x = −π + k π ( k ∈ » ) 3 3 3 3 219
  2. Chương VII. Phương trình lư ng giác – Tr n Phương Bài 3. Gi i phương trình: 2 2 ( sin x + cos x ) cos x = 3 + cos 2 x (1) Gi i (1) ⇔ 2 sin 2 x + 2 (1 + cos 2 x ) = 3 + cos 2 x ⇔ 2 sin 2 x + ( 2 − 1) cos 2 x = 3 − 2  a 2 + b 2 = ( 2 ) 2 + ( 2 − 1) 2 = 5 − 2 2  .Ta có  2 . Ta s ch ng minh: a 2 + b 2 < c 2 c = ( 3 − 2 ) = 11 − 6 2  2 2 ⇔ 5 − 2 2 < 11 − 6 2 ⇔ ( 4 2 ) < 6 2 ⇔ 32 < 36 ( úng). V y (1) vô nghi m. ( ) ( Bài 4. Gi i phương trình: 3sin x − π + 4 sin x + π + 5 sin 5 x + π = 0 3 6 6 ) ( ) Gi i ( ) ( ) ⇔ 3sin x − π + 4 cos  π − x + π  = −5sin 5 x + π 3 2  6   6 ( ) ( 3 ) 3 ( ) 6 ( ) ⇔ 3sin x − π + 4 cos π − x = 5sin  5 x + π + π .    t sin α = 4 , cos α = 3 5 5 ⇔ cos α sin  x − π  + sin α.cos ( x − π ) = sin ( 5 x + 7 π )   3  3 6 ⇔ sin ( x − π ) + α  = sin ( 5 x + 7 π ) ⇔ x = 9π + α + k π ∨ x = π − α + k π   3   6 24 4 2 36 6 3 Bài 5. Gi i phương trình: 4 sin 3 x cos 3x + 4 cos 3 x sin 3 x + 3 3 cos 4 x = 3 (1) Gi i (1) ⇔ [3sin x − sin 3 x ] cos 3x + [ 3cos x + cos 3x ] sin 3x + 3 3 cos 4 x = 3 ⇔ 3 [sin x cos 3 x + sin 3 x cos x ] + 3 3 cos 4 x = 3 ⇔ sin 4 x + 3 cos 4 x = 1 ⇔ 1 sin 4 x + 2 2 3 cos 4 x = 1 ⇔ cos π sin 4 x + sin π cos 4 x = sin 4 x + π = 1 2 3 3 3 2 ( ) ⇔ x = −π + k π ∨ x = π + k π ( k ∈ » ) 24 2 8 2 Bài 6. Gi i phương trình: 3sin x + cos x = 1 Gi i Ta có 3sin x + cos x = 1 ⇔ 3sin x = 1 − cos x 2 2 2 2 ( 2 ) ⇔ 6 sin x cos x = 2 sin 2 x ⇔ 2 sin x 3cos x − sin x = 0 . Xét 2 kh năng 2 a. sin x = 0 ⇔ x = k π ⇔ x = 2k π 2 2 b. 3cos x − sin x = 0 ⇔ tg x = 3 ⇔ x = α + k π ⇔ x = 2α + 2k π ( k ∈ » ) 2 2 2 2 220
  3. Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx Bài 7. Gi i phương trình: sin x + 5 cos x = 1 (1) Gi i 2 ( 2 2 2 )( 2 2 ) ( (1) ⇔ 5 cos x = 1 − sin x ⇔ 5 cos x − sin x cos x + sin x = cos x − sin x 2 ) ( 2 )( 2 2 ) ⇔ cos x − sin x 4 cos x + 6 sin x = 0 ⇔ tan x = 1 ∨ tan x = − 2 = tan α 2 2 2 3 ⇔ x = π + k π ∨ x = α + k π ⇔ x = π + 2 k π ∨ x = 2α + 2 k π ( k ∈ » ) 2 4 2 2 Bài 8. Gi i phương trình: sin x + 3 cos x + sin x + 3 cos x = 2 (1) Gi i   Ta có: sin x + 3 cos x = 2  1 sin x + 2 2 3 cos x  = 2 sin x + π  3 ( ) ( ) t t = sin x + 3 cos x = 2 sin x + π ⇒ 0 ≤ t ≤ 2 , khi ó 3 (1) ⇔ t + t = 2 ⇔ t = 2 − t ⇔ t = ( 2 − t ) 2 ⇔ t 2 − 5t + 4 = 0 ⇔ t = 1∈ [ 0; 2] ( 3 ) (3 2 ) ⇔ 2 sin x + π = 1 ⇔ sin x + π = 1 ⇔ x = −π + 2k π ∨ x = π + 2k π ( k ∈ » ) 6 2 Bài 9. Gi i phương trình: (1 + 3 ) sin x + (1 − 3 ) cos x = 2 (1) Gi i Do b + c = (1 + 3 ) + 2 = 2 − 3 ≠ 0 nên cos x = 0 không là nghi m c a (1) 2 2 t t = tan x ⇒ sin x 2t 2 và cos x = 1 − t 2 , khi ó 2 1+t 1+ t 2 (1) ⇔ (1 + 3 ) 2t + (1 − 3 ) 1 − t = 2 ⇔ 2 (1 + 3 ) t + (1 − 3 ) (1 − t 2 ) = 2 (1 + t 2 ) 1+ t2 1+ t2 ⇔ ( 3 − 3 ) t 2 − 2 (1 + 3 ) t + (1 + 3 ) = 0 ⇔ 1+ 3 t = 1 ∨ t =− ⇔ tan x = tan π ∨ tan x = tan 5π ⇔ x = π + 2k π ∨ x = 5π + 2k π 3 1− 3 2 6 2 12 3 6 Bài 10. Gi i phương trình: sin 3 x + ( 3 − 2 ) cos 3 x = 1 (1) Gi i Do b + c = ( 3 − 2 ) + 1 = 3 − 1 ≠ 0 nên cos 3 x = 0 không là nghi m c a (1) 2 221
  4. Chương VII. Phương trình lư ng giác – Tr n Phương 2 t t = tan 3 x ⇒ sin 3 x = 2t 2 và cos 3 x = 1 − t 2 , khi ó 2 1+ t 1+ t (1) ⇔ 2t + ( 3 − 2 ) (1 − t 2 ) = 1 + t 2 ⇔ (1 − 3 ) t 2 + 2t + ( 3 − 3) = 0 t = 1 ⇔ ⇔ tan 3x = 1 ∨ tan 3 x = 3 ⇔ x = π + 2k π ∨ x = 2π + 2k π ( k ∈ » ) t = 3 2 2 6 3 9 3 Bài 11. Tìm m 2 sin x + m cos x = 1 − m (1) có nghi m x ∈  −π , π   2 2   Gi i Do b + c = m + (1 − m ) ≠ 0 nên cos x = 0 không là nghi m c a (1) 2 2 t t = tan x thì (1) ⇔ 2 ⋅ 2t 2 + m ⋅ 1 − t 2 = 1 − m 2 1+ t 1+ t ⇔ 4t + m (1 − t 2 ) = (1 − m ) (1 + t 2 ) ⇔ f ( t ) = t 2 − 4t + 1 − 2m = 0 Cách 1: Yêu c u bài toán ⇔ f ( t ) = t 2 − 4t + 1 − 2m = 0 có nghi m t ∈ [ −1,1] Xét f ( −1) = 0 ⇔ 6 − 2m = 0 ⇔ m = 3 th a mãn Xét f (1) = 0 ⇔ −2 − 2m = 0 ⇔ m = −1 th a mãn Xét f ( t ) = 0 có 1 nghi m t ∈ ( −1,1) và 1 nghi m t ∉ [ −1,1] ⇔ f ( −1) f (1) = ( 6 − 2m ) ( −2 − 2m ) < 0 ⇔ ( 2m − 6 ) ( 2m + 2 ) < 0 ⇔ −1 < m < 3 Xét f ( t ) = 0 có 2 nghi m t1 , t 2 th a mãn −1 < t1 ≤ t 2 < 1 { } ⇔ ∆ ′ ≥ 0; 1. f ( −1) > 0 ; 1. f (1) > 0; − 1 < S < 1 , h này vô nghi m 2 K t lu n: (1) có nghi m x ∈  −π , π  ⇔ −1 ≤ m ≤ 3 .  2 2   Cách 2: f ( t ) = t 2 − 4t + 1 − 2m = 0 có nghi m t ∈ [ −1,1] ⇔ g ( t ) = 1 t 2 − 2t + 1 = m có nghi m t ∈ [ −1,1] 2 2 Ta có: g ′ ( t ) = t − 2 < 0 ∀t ∈ [ −1,1] ⇒ g ( t ) ngh ch bi n trên [ −1,1] Suy ra t p giá tr g ( t ) là o n  g (1) , g ( −1) ≡ [ −1, 3] . T   ó (1) có nghi m x ∈  −π , π  ⇔ g ( t ) = m có nghi m t ∈ [ −1,1] ⇔ −1 ≤ m ≤ 3  2 2   222
  5. Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx II. PHƯƠNG TRÌNH NG C P B C 2 V I SINX, COSX 1. Phương pháp chung a sin 2 x + b sin x cos x + c cos 2 x + d = 0 v i a 2 + b 2 + c 2 > 0 (1) Bư c 1: Xét cos x = 0 có là nghi m c a (1) hay không ⇔ a + d = 0 Bư c 2: Xét a + d ≠ 0 ⇒ cos x = 0 không là nghi m c a (1) Chia 2 v c a (1) cho cos 2 x ≠ 0 ta nh n ư c phương trình (1) ⇔ a tan 2 x + b tan x + c + d (1 + tan 2 x ) = 0 . t t = tan x (1) ⇔ f ( t ) = ( a + d ) t 2 + bt + ( c + d ) = 0 Bư c 3: Gi i và bi n lu n f ( t ) = 0 ⇒ Nghi m t 0 = tg x ⇒ nghi m x. 2. Các bài t p m u minh h a Bài 1. a. Gi i phương trình: sin 2 x + 2 sin x cos x + 3cos 2 x − 3 = 0 b. Gi i phương trình: sin 2 x − 3sin x cos x + 1 = 0 Gi i a. sin 2 x + 2 sin x cos x + 3cos 2 x − 3 = 0 (1) cos x = 0   2 sin x = 1 N u cos x = 0 là nghi m c a (1) thì t (1) ⇒  2 ⇔ 2 sin x − 3 = 0 sin x = 3   ⇒ Vô lý. Chia 2 v c a (1) cho cos 2 x ≠ 0 ta nh n ư c (1) ⇔ tan 2 x + 2 tan x + 3 − 3 (1 + tan 2 x ) = 0 ⇔ 2 tan x − 2 tan 2 x = 0  tan x = 0 x = kπ ⇔ 2 tan x (1 − tan x ) = 0 ⇔  ⇔ (k ∈ »)  tan x = 1 x = π + kπ  4 b. sin 2 x − 3sin x cos x + 1 = 0 (2) cos x = 0  N u cos x = 0 là nghi m c a (2) thì t (2) ⇒  2 ⇒ Vô lý sin x + 1 = 0  Chia 2 v c a (2) cho cos 2 x ≠ 0 ta nh n ư c phương trình ( 2 ) ⇔ tan 2 x − 3 tan x + (1 + tan 2 x ) = 0 ⇔ 2 tan 2 x − 3 tan x + 1 = 0  tan x = 1 = tan π  π  ( tan x − 1) ( 2 tan x − 1) = 0 ⇔  4 ⇔  x = 4 + k π ( k ∈ ») ⇔ 1 x = α + kπ  tan x = = tan α   2 223
  6. Chương VII. Phương trình lư ng giác – Tr n Phương Bài 2. a. Gi i phương trình: 4 3 sin x cos x + 4 cos 2 x = 2 sin 2 x + 5 2 (2 2) ( ) 2 ( b. GPT: 3sin 2 x ( 3π − x ) + 2 sin 5π + x cos π + x − 5sin 2 3π + x = 0 ) Gi i a. Phương trình ⇔ 2 sin 2 x − 4 3 sin x cos x − 4 cos 2 x + 5 = 0 (1) 2 N u cos x = 0 là nghi m c a (1) thì t (1) ⇒ 2 sin x + 5 = 0 ⇒ Vô lý 2 2 Chia 2 v c a (1) cho cos 2 x ≠ 0 ta nh n ư c phương trình (1) ⇔ 2 tan 2 x − 4 3 tan x − 4 + 5 (1 + tan 2 x ) = 0 ⇔ 9 tan 2 x − 8 3 tan − 3 = 0 2 − 3 ⇔ tan x = 3 = tan π ∨ tan x = = tan α ⇔ x = π + k π ∨ x = α + k π ( k ∈ » ) 3 9 3 ( 2 ) ( 2 ) 2 ( b. 3sin 2 x ( 3π − x ) + 2 sin 5π + x cos π + x − 5sin 2 3π + x = 0 ) ⇔ 3sin 2 x − 2 sin x cos x − 5 cos 2 x = 0 ( 2 ) cos x = 0 N u cos x = 0 là nghi m c a (1) thì t (2) ⇒  ⇒ Vô lý sin x = 0 Chia 2 v c a (2) cho cos 2 x ≠ 0 ta nh n ư c phương trình  tan x = −1 = tan −π  x = −π + k π  4 ( 2 ) ⇔ 3 tan x − 2 tan x − 5 = 0 ⇔  2 ⇔ 4 tan x = 5 = tan α x = α = kπ    3 Bài 3. GPT: a. 3 sin x + cos x = 1 b. 4 sin x + 6 cos x = 1 cos x cos x Gi i a. 3 sin x + cos x = 1 ⇔ 3 sin x + cos x = 1 ⇔ 3 tan x + 1 = 1 + tan 2 x cos x cos x cos 2 x  tan x = 0 ⇔ tan 2 x − 3 tan x = 0 ⇔ tan x ( tan x − 3 ) = 0 ⇔   tan x = 3 { 3 } ⇔ x ∈ k π; π + k π b. 4 sin x + 6 cos x = 1 ⇔ 4 sin x + 6 cos x = 12 ⇔ 4 tan x + 6 = 1 + tan 2 x ⇔ cos x cos x cos x tan x = −1 = tan −π  x = −π + k π tan 2 x − 4 tan x − 5 = 0 ⇔ ( tan x + 1)( tan x − 5) = 0 ⇔  4 ⇔ 4 tan x = 5 = tan α x = α + kπ   224
  7. Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx Bài 4. Gi i phương trình: 7 sin 2 x + 2 sin 2 x − 3cos 2 x − 3 3 15 = 0 (1) Gi i cos x = 0  N u cos x = 0 là nghi m c a (1) thì t (1) ⇒  2 ⇒ Vô lý 7 sin x = 3 3 15  Chia 2 v c a (1) cho cos 2 x ≠ 0 ta có (1) ⇔ 7 tan 2 x + 4 tan x − 3 − 33 15 (1 + tan 2 x ) = 0 ⇔ ( 7 − 3 3 15 ) tan 2 x + 4 tan x − ( 3 + 3 3 15 ) = 0 ( 2 ) . Ta có ∆ ′ = 25 + 12 3 15 − 9 3 15 2 t t = 3 15 ⇒ t 3 = 15 ⇒ 5 t 3 = 25 , ta s ch ng minh ∆′<0 . Th t v y, ta có: 3 3 3 ( 5 ) ∆′ = 5 t 3 − 9t 2 + 12t = 5 t ( t − 3) t − 12 . Do ( 2, 4) < 15 < 33 ⇔ 2, 4 = 12 < t = 3 15 < 3 3 5 nên suy ra: ∆ ′ < 0 ⇒ ( 2 ) vô nghi m ⇒ (1) vô nghi m. Bài 5. Tìm m : m cos 2 x − 4 sin x cos x + m − 2 = 0 có nghi m x ∈ 0, π 4 ( ) Gi i ( ) V i x ∈ 0, π thì cos x ≠ 0 nên chia 2 v phương trình cho cos 2 x ≠ 0 ta có 4 m − 4 tan x + ( m − 2 ) (1 + tan 2 x ) = 0 . t t = tan x ∈ ( 0,1) . Khi ó: ( m − 2 ) t 2 − 4t + 2m − 2 = 0 ⇔ m ( t 2 + 2 ) = 2t 2 + 4t + 2 ⇔ 2 ( t 2 + 2t + 1) −4 ( t 2 − t − 2) 4 ( 2 − t )( t + 1) g (t ) = = m . Ta có g ′ ( t ) = = > 0, ∀t ∈( 0, 1) t2 + 2 ( t 2 + 2) 2 ( t 2 + 2) 2 ⇒ g ( t ) tăng / ( 0,1) ⇒ g ( t ) = m có nghi m t ∈ ( 0,1) ⇔ m ∈ ( g ( 0 ) , g (1) ) ≡ (1, 2 ) . Bài 6. Cho phương trình: sin 2 x + ( 2m − 2 ) sin x cos x − ( m + 1) cos 2 x = m (1) a. GPT: m = −2 b. Tìm m phương trình có nghi m. Gi i N u cos x = 0 là nghi m c a phương trình (1) thì t (1) suy ra cos x = 0 sin 2 x = 1  m = 1 m = 1   m = 1   2 ⇔ 2 ⇔ 2 ⇔ ⇔ π sin x = m  sin x = m  sin x = 1 cos x = 0  x = + k π   2 N u m ≠ 1 thì cos x = 0 không là nghi m c a (1), khi ó chia 2 v c a (1) cho cos 2 x ≠ 0 ta có: (1) ⇔ tan 2 x + ( 2m − 2 ) tan x − ( m + 1) = m (1 + tan 2 x ) 225
  8. Chương VII. Phương trình lư ng giác – Tr n Phương ⇔ f ( tan x ) = ( m − 1) tan 2 x − 2 ( m − 1) tan x + 2m + 1 = 0 a. N u m = −2 thì (1) ⇔ −3 ( tan x − 1) = 0 ⇔ x = π + k π 2 4 m = 1 m = 1   b. (1) có nghi m ⇔   m ≠ 1 ⇔   m ≠ 1  ⇔ −2 ≤ m ≤ 1   ∆ ′ ≥ 0  2  −m − m + 2 ≥ 0   Bài 7. Cho phương trình: cos 2 x − sin x cos x − 2 sin 2 x − m − 0 (1) a. Gi i phương trình (1) khi m = 1 b. Gi i bi n lu n theo m Gi i a. V i m = 1 ta có (1) ⇔ cos 2 x − sin x cos x − 2 sin 2 x − 1 = 0 ⇔ ( cos x + 3sin x ) sin x = 0 ⇔ sin x = 0 ∨ co tg x = −3 = cotg α ⇔ x ∈ {k π ; α + k π} b. (1) ⇔ 1 + cos 2 x − 1 sin 2 x − (1 − cos 2 x ) − m = 0 ⇔ 3cos 2 x − sin 2 x = 2m + 1 2 2 ⇔ 3 cos 2 x − 1 sin 2 x = 2m + 1 . t cos α = 3 , sin α = 1 , khi ó ta có 10 10 10 10 10 cos α cos 2 x − sin α sin 2 x = 2m + 1 ⇔ cos ( 2 x + α ) = 2m + 1 10 10  −1 − 10   −1 + 10  + N u 2m + 1 > 1 ⇔  m <  ∪ m >  thì (2) vô nghi m 10  2   2   −1 − 10 −1 + 10  + N u 2m + 1 ≤ 1 ⇔ m ∈  ,  thì t 2m + 1 = cos β 10  2 2  10 ±β − α Khi ó (1) ⇔ ( 2 ) ⇔ cos ( 2 x + α ) = cos β ⇔ x = + kπ 2 Bài 8. Gi i và bi n lu n: m sin 2 x + 4 sin x cos x + 2 cos 2 x = 0 (1) Gi i cos x = 0 • m = 0 , (1) ⇔ 2 cos x ( 2sin x + cos x ) = 0 ⇔  cot x = −2 = cot α { ⇔ x ∈ π + kπ; α + kπ 2 } • m ≠ 0 thì (1) ⇔ m tan 2 x + 4 tan x + 2 = 0 v i ∆ ′ = 4 − 2m + N u m > 2 thì (1) vô nghi m; N u m = 2 thì tan x = −1 ⇔ x = −π + k π 4 −2 ± 4 − 2m + N u 0 ≠ m < 2 thì tan x = = tan β ⇔ x = β + k π . m 226
  9. Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx III. PHƯƠNG TRÌNH NG C P B C 3 V I SINX, COSX 1. Phương pháp chung a sin 3 x + b sin 2 x cos x + c sin x cos 2 x + d cos 3 x = 0 v i a 2 + b 2 + c 2 + d 2 > 0 (1) a sin 3 x + b sin 2 x cos x + c sin x cos 2 x + d cos 3 x + ( m sin x + n cos x ) = 0 Bư c 1: Xét cos x = 0 có là nghi m c a phương trình hay không Bư c 2: Xét cos x ≠ 0 không là nghi m c a phương trình. Chia 2 v c a (1) cho cos 3 x ≠ 0 và s d ng công th c 1 = 1 + tan 2 x ; sin x = tan x (1 + tan 2 x ) cos 2 x cos 3 x ta nh n ư c phương trình b c 3 n tan x . Bư c 3: Gi i và bi n lu n phương trình b c 3 n tg x . 2. Các bài t p m u minh h a Bài 1. Gi i phương trình: 4 sin 3 x + 3cos 3 x − 3sin x − sin 2 x cos x = 0 (1) Gi i N u cos x = 0 là nghi m c a (1) thì t (1) suy ra cos x = 0  sin x = 1 ∨ sin x = −1   3 ⇔ 3 ⇒ Vô lý  4 sin x − 3sin x = 0   4 sin x − 3sin x = 0  Chia 2 v c a (1) cho cos 3 x ≠ 0 ta có (1) ⇔ 4tan 3 x + 3 − 3tan x (1+ tan 2 x) − tan 2 x = 0 ⇔ tan 3 x − tan 2 x − 3 tan x (1 + tan 2 x ) − tan 2 x = 0 ⇔ ( tan x − 1) ( tan x 2 − 3) = 0 ⇔ tan x = 1 ∨ tan x = ± 3 ⇔ x = π + k π ∨ x = ± π + k π ( k ∈ » ) 4 3 Bài 2. Gi i phương trình: sin 2 x.sin 2 x + sin 3 x = 6 cos 3 x (1) Gi i (1) ⇔ sin x ( 2 sin x cos x ) + 3sin x − 4 sin 3 x = 6 cos 3 x ⇔ 4 sin 3 x − 3sin x − 2 sin 2 x cos x + 6 cos 3 x = 0 (2) N u cos x = 0 là nghi m c a (2) thì t (2) suy ra cos x = 0  sin x = 1 ∨ sin x = −1   3 ⇔ 3 ⇒ Vô lý   4 sin x − 3sin x = 0  4 sin x − 3sin x = 0  Chia 2 v c a (2) cho cos 3 x ≠ 0 ta có ( 2 ) ⇔ tan 3 x − 2 tan 2 x − 3 tan x + 6 = 0 { ⇔ ( tan x − 2) ( tan 2 x − 3) = 0 ⇔ tan x = 2 = tan α ∨ tan x = ± 3 ⇔ x ∈ α + k π ; ± π + k π 3 } 227
  10. Chương VII. Phương trình lư ng giác – Tr n Phương Bài 3. Gi i phương trình: 1 + 3sin 2 x = 2 tan x Gi i i u ki n: cos x ≠ 0 ⇔ x ≠ π + k π (1) 2 1 + 3sin 2 x = 2 tan x ⇔ 1 + 6 sin x cos x = 2 tan x ⇔ 1 + 6 tan x = 2 tan x ⋅ 1 cos 2 x cos 2 x ⇔ (1 + tan 2 x ) + 6 tan x = 2 tan x (1 + tan 2 x ) ⇔ 2 tan 3 x − tan 2 x − 4 tan x − 1 = 0  tan x = −1  x = − π + nπ ⇔ ( tan x + 1) ( 2 tan x − 3 tan x − 1) = 0 ⇔  2 ⇔ 4  tan x = 3 ± 17 = tan α  x = α + nπ   4 1,2  1,2 Bài 4. Gi i phương trình: ( ) 2 sin 3 x + π = 2 sin x (1) 4 Gi i 3 ( ) 4  4   ( ) (1) ⇔ 2 2 sin 3 x + π = 4sin x ⇔  2 sin x + π  = 4sin x ⇔ ( sin x + cos x ) 3 = 4sin x  N u cos x = 0 là nghi m c a (1) thì t (1) suy ra cos x = 0  sin x = 1 ∨ sin x = −1   3 ⇔ 3 ⇒ Vô lý sin x = 4 sin x  sin x − 4 sin x = 0  Chia 2 v c a (1) cho cos 3 x ≠ 0 ta có (1) ⇔ ( tan x + 1) 3 = 4 tan x (1 + tan 2 x ) ⇔ tan 2 x + 3tan 2 x + 3tan x + 1 = 4 tan 3 x + 4 tan x ⇔ 3tan 3 x − 3tan 2 x + tan x −1 = 0 ⇔ ( tan x −1) ( 3tan 2 x +1) = 0 ⇔ tan x = 1 ⇔ x = π + k π 4 ( Bài 5. Gi i phương trình: 8 cos 3 x + π = cos 3 x 3 ) Gi i 3 ( 3 ) 8 cos 3 x + π = cos 3 x ⇔ 8  cos x.cos π − sin x sin π  = cos 3x   3 3 3 3 ⇔ ( cos x − 3 sin x ) = 4 cos 3 x − 3cos x ⇔ ( 3 sin x − cos x ) − 3cos x + 4 cos 3 x = 0 (1) N u cos x = 0 là nghi m c a (1) thì t (1) suy ra cos x = 1  ⇒ 0 = cos 2 x + sin 2 x = 1 ⇒ 0 = 1 ⇒ Vô lý sin x = 0 228
  11. Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx 3 Chia 2 v c a (1) cho cos 3 x ≠ 0 ta có (1) ⇔ ( 3. tan x − 1) − 3 (1 + tan 2 x ) + 4 = 0 2 ⇔ 3 3 tan 3 x − 3 ( 3 tan x ) + 3 3 tan x − 1 − 3 (1 + tan 2 x ) + 4 = 0 ⇔ 3 3 tan 3 x − 12 tan 2 x + 3 3 tan x = 0 ⇔ tan x ( 3 tan 2 x − 4 tan x + 3 ) = 0 3 6 3 { ⇔ tan x = 0 ∨ tan x = 1 ∨ tan x = 3 ⇔ x ∈ k π ; π + k π ; π + k π ( k ∈ » ) } ( Bài 6. Gi i phương trình: sin 3 x − π = 2 sin x (1) 4 ) Gi i 3 ( 4 )   4   ( (1) ⇔ 2 2 sin 3 x − π = 4 sin x ⇔  2 sin x − π  = 4 sin x ) ⇔ ( sin x − cos x ) = 4 sin x ⇔ ( tan x − 1) = 4 tan x (1 + tan 2 x ) 3 3 ⇔ tan 3 x − 3 tan 2 x + 3 tan x − 1 = 4 tan 3 x + 4 tan x ⇔ 3 tan 3 x + 3 tan 2 x + tan x + 1 = 0 ⇔ ( tan x + 1) ( 3 tan 2 x + 1) = 0 ⇔ tan x + 1 = 0 ⇔ tan x = −1 ⇔ x = − π + k π ( k ∈ » ) 4 Bài 7. Gi i phương trình: 6 sin x − 2 cos 3 x = 5sin 4 x cos x (1) 2 cos 2 x Gi i i u ki n: cos 2 x ≠ 0 ⇔ 2 x ≠ π + k π ⇔ x ≠ π + k π ( 2 ) 2 4 2 V i i u ki n (2) ta có (1) ⇔ 6 sin x − 2 cos 3 x = 5sin 2 x cos x ⇔ 6 sin x − 2 cos 3 x = 5 ( 2 sin x cos x ) cos x ⇔ 3sin x − cos 3 x − 5 sin x cos 2 x = 0 (3) N u cos x = 0 là nghi m c a (3) thì t (3) suy ra cos x = 0  ⇒ 0 = sin 2 x + cos 2 x = 1 ⇒ 0 = 1 ⇒ Vô lý sin x = 0 Chia 2 v c a (3) cho cos 3 x ≠ 0 ta có 3 tan x (1 + tan 2 x ) − 1 − 5 tan x = 0 ⇔ ( tan x − 1) ( 3. tan 2 x + 3 tan x + 1) = 0  2   ( ⇔ ( tan x − 1) 3 tan x + 1 2 ) + 1  = 0 ⇔ tan x = 1 ⇔ x = π + nπ 4 4 Do x = π + nπ mâu thu n v i (2): x ≠ π + k π nên phương trình (1) vô nghi m. 4 4 2 229
  12. Chương VII. Phương trình lư ng giác – Tr n Phương Bài 8. ( 4 − 6m ) sin 3 x + 3 ( 2m − 1) sin x + 2 ( m − 2 ) sin 2 x cos x − ( 4m − 3) cos x = 0 a. Gi i phương trình khi m = 2 b. Tìm m phương trình có nghi m duy nh t x ∈  0, π   4   Gi i N u cos x = 0 là nghi m c a phương trình thì t phương trình suy ra cos x = 0  sin x = 1 ∨ sin x = −1   ⇔ ⇒ Vô lý  ( 4 − 6 ) sin x + ( 6m − 3) sin x = 0 ( 4 − 6m ) sin 3 x + ( 6m − 3) sin x 3  Chia 2 v c a phương trình cho cos 3 x ≠ 0 ta có phương trình ⇔ ( 4 − 6m) tan 3 x + 3 ( 2m − 1) tan x (1 + tan 2 x ) + 2 ( m − 2) tan 2 x − ( 4m − 3) (1 + tan 2 x ) = 0 ⇔ tan 3 x − ( 2m + 1) tan 2 x + 3 ( 2m − 1) tan x − ( 4m − 3) = 0 ⇔ ( tan x − 1) [ tan 2 x − 2m tan x + ( 4m − 3)] = 0 (1) a. N u m = 2 thì (1) ⇔ ( tan x − 1) ( tan 2 x − 4 tan x + 5 ) = 0 ⇔ ( tan x − 1) ( tan x − 2 ) + 1 ⇔ tan x = 1 ⇔ x = π − k π ( k ∈ » ) 2   4 b. t t = tan x ∈ [ 0,1] ∀x ∈  0, π  , khi ó phương trình  4   t − 1 = 0 ⇔ t = 1∈ [ 0,1] (1) ⇔ ( t − 1) ( t 2 − 2mt + 4m − 3) = 0 ⇔  2 t − 2mt + 4m − 3 = 0  Xét phương trình: t 2 − 2mt + 4m − 3 = 0 v i t ∈ [ 0,1] 2 ( t − 1) ( t − 3) ⇔ t 2 − 3 = 2m ( t − 2 ) ⇔ g ( t ) = t − 3 = 2m . Ta có g ′ ( t ) = ≥ 0 ∀t ∈ [ 0, 1] t −2 ( t − 2) 2 ⇒ g (t ) ng bi n trên [ 0,1] ⇒ T p giá tr g ( t ) là [ g ( 0 ) , g (1)] =  3 ; 2  2    ( ) phương trình (1) có nghi m duy nh t x ∈ 0, π thì phương trình g ( t ) = 2m 4 ho c vô nghi m t ∈ [ 0,1] ho c có úng 1 nghi m t = 1  2m ≥ 2 m ≥ 1 ⇔ g ( t ) = 2m vô nghi m t ∈ [ 0,1) ⇔  ⇔  2m < 3 m < 3  2  4 230
  13. Bài 1. Phương trình ng c p b c nh t, b c hai, b c ba v i sinx, cosx 231

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản