Bài tập cơ học

Chia sẻ: Ha Dung | Ngày: | Loại File: PDF | Số trang:7

8
4.300
lượt xem
1.177
download

Bài tập cơ học

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ
Lưu

Nội dung Text: Bài tập cơ học

  1. Bμi tËp tù gi¶i m«n c¬ häc øng dông PhÇn I. C¬ häc vËt r¾n tuyÖt ®èi C Bμi 1.1 Cho c¬ cÊu bèn kh©u b¶n lÒ víi c¸c chiÒu dμi (2) 1 1 1 AB = BC = CD = AD = a; ω1 = 100s −1 . (3) 3 3 4 ω1 B 1. XÐt ®iÒu kiÖn quay toμn vßng cña kh©u (1) vμ (3). (1) ϕ 2. X¸c ®Þnh ω2 vμ ω3 khi ϕ1 = 00, 1800 vμ khi kh©u (1) 1 D (4) vμ (2) duçi th¼ng. H×nh 1.1 Bμi 1.2 Cho c¬ cÊu bèn kh©u b¶n lÒ ph¼ng víi c¸c chiÒu 1 dμi AB = BC = CD = AD = a; ω1 = 60s −1 . 2 (2) C 1. XÐt ®iÒu kiÖn quay toμn vßng cña kh©u (1) vμ (3). B ω1 (3) I 2. X¸c ®Þnh ω3 khi ϕ1 = 00, 600. (1) r ϕ1 3. Khi kh©u (1) vμ (2) duçi th¼ng h·y x¸c ®Þnh v I (I lμ D A (4) trung ®iÓm kh©u 2). H×nh1. 2 Bμi 1.3 Cho c¬ cÊu bèn kh©u b¶n lÒ ph¼ng nh− h×nh 1.3, 1 1 víi c¸c chiÒu dμi AB = BC = CD = DA = a ; C (2) 3 3 I n1 = 120vg / ph . B 1. X¸c ®Þnh ω2 vμ ω3 khi ϕ1 = 90 . 0 M (3) ω1 ω (1) ϕ1 2. X¸c ®Þnh tû sè i13 = 1 khi ϕ1 = 1800. ω3 (4) D r r A 3. X¸c ®Þnh v I vμ v M khi ϕ1 = 900 (I lμ trung ®iÓm H×nh 1.3 cña BC, M lμ trung ®iÓm cña CD). Bμi 1.4 Cho c¬ cÊu tay quay con tr−ît nh− h×nh 1.4. Cho biÕt AB = a; BC = 2a; ⎧0 e=⎨ ; ω = 100s-1. B ⎩a 2 ω1 (2) 1. Kh©u (1) cã quay ®−îc toμn vßng (1) ϕ1 I hay kh«ng? A (4) C e 2. X¸c ®Þnh hμnh tr×nh cña kh©u (3). M v 3. X¸c ®Þnh i31 = 3 khi gãc ϕ1 = (3) ω1 H×nh 1.4 9 0 0. r r 4. X¸c ®Þnh v3 khi ϕ1 = 2700 vμ v I khi ϕ1 = 00 (I lμ trung ®iÓm cña BC) 1
  2. Bμi 1.5 Cho c¬ cÊu culÝt nh− h×nh 1.5. BiÕt AB =a; AC = a 3 , B CM = a; ω = 90 s-1. (2) (1) ω1 1. X¸c ®Þnh gãc l¾c ψ cña kh©u (3) vμ qu·ng ®−êng M ®i ®−îc khi AB quay ®−îc 2 vßng. (3) A 2. X¸c ®Þnh ω3 khi ϕ1 = 00, 900. ϕ1 r M 3. X¸c ®Þnh v M khi ϕ1 = 1800. Bμi 1.6 Cho c¬ cÊu cam cÇn ®Èy ®¸y b»ng nh− h×nh 1.6. Cam lμ (4) mét ®Üa trßn (C1, R) quay lÖch t©m víi t©m sai e = R = O1C1, H×nh 1.5 C kho¶ng c¸ch t©m O1O2 = 4R. 1. X¸c ®Þnh gãc l¾c ϕ2 cña cÇn l¾c ®¸y b»ng (2). 2. X¸c ®Þnh ω2 khi ϕ1 = 00, 1800. v2 K 1 2 K 2 1 A ω1 ω2 C1 R M ω1 C1 ϕ1 ϕ2 ϕ1 O2 O1 O1 x 3 3 H×nh 1.6 H×nh 1.7 Bμi 1.7 Cho c¬ cÊu cam nh− h×nh 1.7. Cam lμ mét 2 r ®Üa trßn (C1, R) quay lÖch t©m víi t©m sai e =R = O1C1. 3 ω1 (1) C1 r 1. H·y gäi tªn c¬ cÊu cam ®· cho vμ x¸c ®Þnh v A (A n»m O1 ϕ1 (2) trªn kh©u (2)) theo ω1 vμ ϕ1. (3) M 2. X¸c ®Þnh qu·ng ®−êng cña ®iÓm A khi cam quay ®−îc 2 vßng. Bμi 1.8 Cho c¬ cÊu cam cÇn l¾c. Cam lμ thanh O1C1 g¾n chÆt O2 vμo ®Üa trßn (C1, r). CÇn (2) lμ mét thanh cã r·nh réng 2r ®Ó ®Üa trßn tr−ît trong ®ã. BiÕt O1C1 = O1O2 = 6R; O2M = 3R; H×nh 1.8 1. X¸c ®Þnh qu·ng ®−êng M (thuéc cÇn) ®i ®−îc khi 4r y cam quay ®−îc 1 vßng. 2. X¸c ®Þnh vËn tèc cña ®iÓm M khi ϕ1 = 90 . 0 v2 Bμi 1.9 Cho c¬ cÊu cam nh− h×nh 1.9. Cam lμ mét thanh 2 th¼ng quay quanh O, cÇn ®Èy lμ mét ®Üa trßn (C2, r). 1 C2 r 1. X¸c ®Þnh qu·ng ®−êng cÇn ®i ®−îc khi cam rêi vÞ ω1 trÝ ϕ1 = 00 ®Õn ϕ1 = 300. K r ϕ1 O1 2. X¸c ®Þnh v 2 cña cÇn ë hai vÞ trÝ trªn. x 3 H×nh 1.9 2
  3. Bài 1.10 Cho cơ cấu tay quay con trượt ở trạng thái cân bằng dưới tác dụng của các lực và ngẫu lực, như trên hình 1.10. Xác định phản lực liên kết ở các khớp động A, B, C và mômen của ngẫu lực phát động M1. Bỏ qua ma sát ở các khớp động. PhÇn II. C¬ häc vËt r¾n biÕn d¹ng H×nh 1.10 Bài 2.1 Vẽ biểu đồ M=2kNm m=10kNm/m 60kN M lực dọc của thanh A chịu lực như hình 2.1. 40kN B d 2m C A Bài 2.2 Vẽ biểu đồ 100cm mômen xoắn của 50cm q=15kN/m B 2m thanh chịu lực như F=40cm2 H×nh 2.2 C hình 2.2. P=qa q 2m M*=qa2 Bài 2.3 Vẽ biểu đồ 60kN 0 lực cắt và mômen 2 1 3 uốn của dầm chịu lực D a a a như hình 2.3. H×nh 2.1 H×nh 2.3 Bài 2.4 Cho một hệ treo liên kết và chịu lực như hình 2.4. Hãy xác định lực cho phép [q] tác dụng lên hệ F1=1cm2 theo hai điều kiện sau: l1=2m 1) Điều kiện bền của thanh 1 và 2 với [σ] F2=2cm2 = 16kN/cm2. l2=1m q 2) Theo điều kiện cứng: chuyển vị thẳng B đứng của điểm A: ΔA ≤ 1,5 cm. Biết các thanh AB, DE là tuyệt đối cứng, A 2m 3m cho E = 2.104 kN/cm2. H×nh 2.4 Bài 2.5 Cho một trục chịu xoắn như hình 2.5. 1 Hãy vẽ biểu đồ mômen xoắn Mz và ứng M∗ M∗ 2M∗ suất tiếp lớn nhất τmax dọc theo trục z. D B 2 Xác định giá trị của M* để trục làm việc d C 2d A z an toàn về bền và cứng, biết [τ] = 10kN/cm2; [θ] = 2o; d = 6 cm; G = a a a 8.103 kN/cm2; a = 50 cm. Hình 2.5 3 Tính góc xoắn của mặt cắt D so với mặt cắt A. Bμi 2.6 Cho mét dÇm cã liªn kÕt vμ chÞu lùc nh− h×nh 2.6. Thanh g·y khóc CIK tuyÖt ®èi cøng. BiÕt E, a, h, b, [σ]. 1. VÏ biÓu ®å lùc c¾t vμ m«men uèn. 3
  4. 2. X¸c ®Þnh t¶i träng cho phÐp [q], bá b/2 qua ¶nh h−ëng cña lùc c¾t. 3. TÝnh ®é vâng vμ gãc xoay t¹i C. h h/2 a/2 P=qa Bμi 2.7 Cho mét dÇm cã mÆt c¾t ngang, liªn kÕt vμ chÞu lùc nh− h×nh 2.7. q I b K kN a a BiÕt a (cm); q ( ); b = ;h= . C m 40 40 D A B 1. VÏ biÓu ®å lùc c¾t Qy vμ m«men a a a uèn Mx. 2. TÝnh gi¸ trÞ øng suÊt ph¸p lín nhÊt H×nh 2.6 trong dÇm: max⏐σz⏐ (N/cm2). 3. TÝnh ®é vâng t¹i C vμ t¹i D, biÕt E. q P=ql P1=9qa M=2qa2 P2=qa q d A A C h B D B C 2a 2a 2a l/2 l/2 l/2 b H×nh 2.8 H×nh 2.7 Bμi 2.8 Cho mét dÇm cã liªn kÕt vμ chÞu lùc nh− h×nh 2.8. 1. VÏ biÓu ®å lùc c¾t Qy vμ m«men uèn Mx. 2. X¸c ®Þnh d, biÕt l , q vμ [σ]. Bá qua ¶nh h−ëng cña lùc c¾t. 3. TÝnh ®é vâng vμ gãc xoay t¹i C do P g©y ra, biÕt EJx =const. Bμi 2.9 Cho mét dÇm liªn kÕt vμ chÞu lùc nh− h×nh 2.9. BiÕt P1 = 5qa; M1 = 5qa2; M2 = 2qa2. P 1 M1 M2 q 1. VÏ biÓu ®å lùc c¾t Qy vμ m«men uèn Mx. 2. TÝnh gi¸ trÞ øng suÊt ph¸p lín nhÊt A trong dÇm: max⏐σz⏐, biÕt Wx = B C D 3 -4 8a .10 . a a 2a 3. TÝnh ®é vâng t¹i C vμ gãc xoay t¹i D. Cho biÕt EJx. Hình 2.9 Bμi 2.10 Trôc cã hai b¸nh r¨ng, b¸n kÝnh r1=6 cm; r2=12 cm. Lùc theo ph−¬ng tiÕp tuyÕn cña chóng t−¬ng øng lμ P1, P2. Gãc gi÷a c¸c lùc nμy víi ph−¬ng th¼ng ®øng y lμ n 2 α1=45 , α2=30 . ChiÒu 1 0 0 P1x P2x dμi cña ®o¹n trôc z a=10cm; b=15cm; l=25 cm. Trôc cã sè α1 α2 vßng quay n=1000 P1y P2 P1 a b l vg/ph; c«ng suÊt P2y truyÒn t¶i cña trôc Hình 2.10 N=600 kW. X¸c ®Þnh ®−êng kÝnh trôc theo thuyÕt bÒn ¦STLN. BiÕt [σ]=12 kN/cm2. 4
  5. HƯỚNG DẪN GIẢI Bài 1.10: Cho cơ cấu tay quay con trượt ở trạng thái cân bằng dưới tác dụng của các lực và ngẫu lực, như trên hình 5-7. Xác định phản lực liên kết ở các khớp động A, B, C và mômen của ngẫu lực phát động M1. Bỏ qua ma sát ở các khớp động. Hình 5-7 Bài giải ⇒ Cơ cấu tay quay con trượt có một bậc tự do. ⇒ Để xác định phản lực liên kết ta phải tách ra từ cơ r ấu nhóm tĩnh định (2, c 3) không chứa khâu phát động (1). Phản lực liên kết R12 tại B (từ khâu 1 tác rτ rn dụng lên khâu 2) được phân thành hai thành phần: R12 và R12 , phản lực liên r kết R 43 tại C (từ khâu 4 tác dụng lên khâu 3). ⇒ Từ điều kiện cân bằng nhóm tĩnh định: r M M C = 0 ⇒ R12 BC − M 2 = 0 ⇒ R12 = 2 = P n n BC rn ⇒ Chiều của R12 như chiều giả thiết trên hình 5-7b. r rr rτ rn R = 0 ⇒ R + R 43 + R12 + R12 = 0 5
  6. r rτ ⇒ Có thể tìm các ẩn R 43 và R12 bằng cách lập phương trình hình chiếu trên r r phương P và R 43 hoặc dựng đa giác lực. Ở đây ta giải theo cách dựng đa giác lực (hình 5-7c). Từ đó ta có: P24 τ R 43 = R12 = P 3 (R ) + (R ) n2 τ2 R12 = = 2P 12 12 r ⇒ Phản lực liên kết R12 làm với phương r AC góc 600. Sau khi xác định được R12 , dễ dàng tìm được lực liên kết tại khớp quay C: r R 32 (từ khâu 3 tác dụng lên khâu 2) đối r xong với R12 (theo điều kiện cân bằng của r r khâu 2) còn R 23 =- R 32 . ⇒ Xét ngẫu lực M1 và phản lực liên kết trên khâu phát động 1. Phản lựcr liên kết của r khâu 2 đối với khâu 1: R 21 = - R12 . ⇒ Từ điều kiện cân bằng của khâu 1, ta có: r rr M1 = M A (R 21 ) ⇒ M1 = R 21r cos300 = Pr 3 r r ⇒ Phản lực liên kết của giá 4 đối với khâu 1: R 41 = − R 21 ⇒ R 41 = P ⇒ Chú ý: Có thể xác định mômen M1 theo nguyên lý di chuyển khả dĩ như sau - Tưởng tượng cho khâu 1 di chuyển khả dĩ δϕ1 , vì cơ cấu có 1 bậc tự do nên các di chuyển khả dĩ δϕ2 của khâu 2 (quay quanh tâm vận tốc tức thời P24) và δs3 của con trượt 3, xác định phụ thuộc δϕ1 . Theo nguyên lý di chuyển khả dĩ: rr rr rr M1δϕ1 + M 2 δϕ2 + Pδ s3 = 0 hay M1δϕ1 − M 2 δϕ2 − Pδs3 = 0 δs δϕ2 M1 = M 2 +P 3 Từ đó ta có: δϕ1 δϕ1 δs3 v3 δϕ2 ω2 AB = = = = AP13 Chú ý rằng: ; δϕ1 ω1 P24 B δϕ1 ω1 ⎛ ⎞ ω2 v AB M1 = M 2 + P 3 = P⎜ r 3 + AP13 ⎟ = Pr 3 Ta được: ω1 ω1 P24 B ⎝ ⎠ 6
  7. 7
Đồng bộ tài khoản