Bài tập học môn Kinh tế lượng

Chia sẻ: Le Trung | Ngày: | Loại File: DOC | Số trang:70

2
1.459
lượt xem
709
download

Bài tập học môn Kinh tế lượng

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài 1: Thống kế số liệu tỷ lệ lạm phát tại 5 nước trong giai đoạn 1960 - 1980 như sau. a. Vẽ đồ thị phân tán về tỷ lệ lạm phát cho mỗi quốc gia theo thời gian. Và cho nhận xét tổng quát ...

Chủ đề:
Lưu

Nội dung Text: Bài tập học môn Kinh tế lượng

  1. Bài 1 Thống kê số liệu tỉ lệ lạm phát tại 5 nước trong giai đọan 1960-1980 như sau : ĐVT:% Nam US Anh Nhat Duc Phap 1960 1.5 1 3.6 1.5 3.6 1961 1.1 3.4 5.4 2.3 3.4 1962 1.1 4.5 6.7 4.5 4.7 1963 1.2 2.5 7.7 3 4.8 1964 1.4 3.9 3.9 2.3 3.4 1965 1.6 4.6 6.5 3.4 2.6 1966 2.8 3.7 6 3.5 2.7 1967 2.8 2.4 4 1.5 2.7 1968 4.2 4.8 5.5 18 4.5 1969 5 5.2 5.1 2.6 6.4 1970 5.9 6.5 7.6 3.7 5.5 1971 4.3 9.5 6.3 5.3 5.5 1972 3.6 6.8 4.9 5.4 5.9 1973 6.2 8.4 12 7 7.5 1974 10.9 16 24.6 7 14 1975 9.2 24.2 11.7 5.9 11.7 1976 5.8 16.5 9.3 4.5 9.6 1977 6.4 15.9 8.1 3.7 9.4 1978 7.6 8.3 3.8 2.7 9.1 1979 11.4 13.4 3.6 4.1 10.7 1980 13.6 18 8 5.5 13.3 Nguồn tin : khoa tóan thống kê – ĐHKT a. Vẽ đồ thị phân tán về tỉ lệ lạm phát cho mỗi quốc gia theo thời gian . Cho nhận xét tổng quát về lạm phát của 5 nước ?
  2. 25 20 20 16 15 12 DUC ANH 10 8 5 4 0 0 1956 1960 1964 1968 1972 1976 1980 1984 1956 1960 1964 1968 1972 1976 1980 1984 NAM NAM 28 16 24 14 20 12 16 10 NHAT PHAP 12 8 8 6 4 4 0 2 1956 1960 1964 1968 1972 1976 1980 1984 1956 1960 1964 1968 1972 1976 1980 1984 NAM NAM 14 12 10 8 US 6 4 2 0 1956 1960 1964 1968 1972 1976 1980 1984 NAM
  3. Nhận xét: NHìn chung tỷ lệ lạm phát của có đều có xu hướng tăng lên, nhưng trong đó Đức và Nhật chỉ tăng chậm. b. Lạm phát nước nào biến thiên nhiều hơn giải thích ? ANH DUC NHAT PHAP US Mean 8.547619 4.638095 7.347619 6.714286 5.123810 Median 6.500000 3.700000 6.300000 5.500000 4.300000 Maximum 24.20000 18.00000 24.60000 14.00000 13.60000 Minimum 1.000000 1.500000 3.600000 2.600000 1.100000 Std. Dev. 6.321046 3.458248 4.632992 3.579146 3.694984 Skewness 0.941799 2.852530 2.603757 0.653541 0.784310 Kurtosis 2.866323 11.83415 10.29502 2.214858 2.672861 Jarque-Bera 3.120083 96.76612 70.29363 2.034298 2.246638 Probability 0.210127 0.000000 0.000000 0.361625 0.325199 Sum 179.5000 97.40000 154.3000 141.0000 107.6000 Sum Sq. Dev. 799.1124 239.1895 429.2924 256.2057 273.0581 Observations 21 21 21 21 21 Từ bảng tính các thống kê mô tả, ta thấy độ lệch chuẩn lạm phát của nước Anh là lớn nhất ( = 6.321046) do đó lạm phát của nước Anh biến thiên nhiều nhất. c. Ươc lượng mô hình hồi qui: Lạm phát theo thời gian cho từng quốc gia theo giả định (Lamphat)i = 1 + 2 (Thoigian)i + Ui Đọc và nhận xét phương trình hồi qui của anh chị? - Đưa ra kết luận tổng quát về tác động lạm phát tại từng quốc gia ? Vẽ đồ thị ? - Ước lượng mô hình hồi qui US: Dependent Variable: US Method: Least Squares Date: 05/10/10 Time: 21:02 Sample: 1960 1980 Included observations: 21
  4. Variable Coefficient Std. Error t-Statistic Prob. C -0.164502 0.734285 -0.224030 0.8251 NAMMOHINH 0.528831 0.062811 8.419444 0.0000 R-squared 0.788624 Mean dependent var 5.123810 Adjusted R-squared 0.777499 S.D. dependent var 3.694984 S.E. of regression 1.742926 Akaike info criterion 4.039401 Sum squared resid 57.71804 Schwarz criterion 4.138879 Log likelihood -40.41371 F-statistic 70.88704 Durbin-Watson stat 1.131804 Prob(F-statistic) 0.000000 US = -0.1645021645 + 0.5288311688*NAMMOHINH Khi số năm tăng thêm 1 năm thì về trung bình tỷ lệ lạm phát của nước Mỹ tăng lên 0.52883%. Tỷ lệ lạm phát tăng nhanh tác động mạnh mẽ đến nền kinh tế, làm cho giá cả các mặt hàng tăng lên nhanh chóng… US vs. NAM 14 12 10 8 6 US 4 2 0 -2 1956 1960 1964 1968 1972 1976 1980 1984 NAM - Ước lượng mô hình hồi qui Anh: Dependent Variable: ANH Method: Least Squares Date: 05/10/10 Time: 21:03 Sample: 1960 1980 Included observations: 21
  5. Variable Coefficient Std. Error t-Statistic Prob. C 0.322944 1.612211 0.200311 0.8434 NAMMOHINH 0.822468 0.137908 5.963871 0.0000 R-squared 0.651809 Mean dependent var 8.547619 Adjusted R-squared 0.633483 S.D. dependent var 6.321046 S.E. of regression 3.826801 Akaike info criterion 5.612328 Sum squared resid 278.2437 Schwarz criterion 5.711806 Log likelihood -56.92945 F-statistic 35.56776 Durbin-Watson stat 1.141176 Prob(F-statistic) 0.000010 ANH = 0.3229437229 + 0.8224675325*NAMMOHINH Khi số năm tăng thêm 1 năm thì về trung bình tỷ lệ lạm phát của nước Anh tăng lên 0.823%. ANH vs. NAM 25 20 15 ANH 10 5 0 1956 1960 1964 1968 1972 1976 1980 1984 NAM - Ước lượng mô hình hồi qui Nhật: Dependent Variable: NHAT Method: Least Squares Date: 05/10/10 Time: 21:09 Sample: 1960 1980 Included observations: 21 Variable Coefficient Std. Error t-Statistic Prob.
  6. C 5.215152 1.919155 2.717421 0.0137 NAMMOHINH 0.213247 0.164164 1.298984 0.2095 R-squared 0.081565 Mean dependent var 7.347619 Adjusted R-squared 0.033226 S.D. dependent var 4.632992 S.E. of regression 4.555374 Akaike info criterion 5.960885 Sum squared resid 394.2773 Schwarz criterion 6.060364 Log likelihood -60.58929 F-statistic 1.687359 Durbin-Watson stat 1.175297 Prob(F-statistic) 0.209493 NHAT = 5.215151515 + 0.2132467532*NAMMOHINH Khi số năm tăng thêm 1 năm thì về trung bình tỷ lệ lạm phát của nước Nhật tăng lên 0.21324%. NHAT vs. NAM 28 24 20 16 NHAT 12 8 4 0 1956 1960 1964 1968 1972 1976 1980 1984 NAM - Ước lượng mô hình hồi qui Đức: Dependent Variable: DUC Method: Least Squares Date: 05/10/10 Time: 21:20 Sample: 1960 1980 Included observations: 21 Variable Coefficient Std. Error t-Statistic Prob.
  7. C 3.593939 1.468324 2.447648 0.0243 NAMMOHINH 0.104416 0.125600 0.831332 0.4161 R-squared 0.035098 Mean dependent var 4.638095 Adjusted R-squared -0.015687 S.D. dependent var 3.458248 S.E. of regression 3.485266 Akaike info criterion 5.425359 Sum squared resid 230.7945 Schwarz criterion 5.524837 Log likelihood -54.96626 F-statistic 0.691114 Durbin-Watson stat 2.328057 Prob(F-statistic) 0.416112 DUC = 3.593939394 + 0.1044155844*NAMMOHINH Khi số năm tăng thêm 1 năm thì về trung bình tỷ lệ lạm phát của nước Đức tăng lên 0.104415%. DUC vs. NAM 20 16 12 DUC 8 4 0 1956 1960 1964 1968 1972 1976 1980 1984 NAM - Ước lượng mô hình hồi qui Phap: Dependent Variable: PHAP Method: Least Squares Date: 05/10/10 Time: 21:21 Sample: 1960 1980 Included observations: 21 Variable Coefficient Std. Error t-Statistic Prob. C 1.853247 0.832871 2.225130 0.0384
  8. NAMMOHINH 0.486104 0.071244 6.823112 0.0000 R-squared 0.710166 Mean dependent var 6.714286 Adjusted R-squared 0.694912 S.D. dependent var 3.579146 S.E. of regression 1.976933 Akaike info criterion 4.291363 Sum squared resid 74.25703 Schwarz criterion 4.390842 Log likelihood -43.05931 F-statistic 46.55486 Durbin-Watson stat 0.961869 Prob(F-statistic) 0.000002 PHAP = 1.853246753 + 0.4861038961*NAMMOHINH Khi số năm tăng thêm 1 năm thì về trung bình tỷ lệ lạm phát của nước Pháp tăng lên 0.48610%. PHAP vs. NAM 16 14 12 10 PHAP 8 6 4 2 0 1956 1960 1964 1968 1972 1976 1980 1984 NAM d. Ươc lượng mô hình hồi qui: Lạm phát của từng quốc gia theo tỉ lệ lạm phát của Mỹ (Lamphat)i = 1 + 2 (lamphat-USA)i + Ui Đọc và đánh giá từng mô hình ước lượng ? Đưa ra kết luận tổng quát về tác động lạm phát tại từng quốc gia so với lạm phát của USA ? - Anh và US:
  9. Dependent Variable: ANH Method: Least Squares Date: 05/10/10 Time: 21:22 Sample: 1960 1980 Included observations: 21 Variable Coefficient Std. Error t-Statistic Prob. C 3.942998 1.029230 3.831018 0.0011 ANHLP 1.344882 0.199758 6.732569 0.0000 R-squared 0.704636 Mean dependent var 8.547619 Adjusted R-squared 0.689091 S.D. dependent var 6.321046 S.E. of regression 3.524566 Akaike info criterion 5.447784 Sum squared resid 236.0287 Schwarz criterion 5.547263 Log likelihood -55.20174 F-statistic 45.32748 Durbin-Watson stat 0.439091 Prob(F-statistic) 0.000002 ANH = 3.942998281 + 1.344882282*ANHLP Khi lạm phát của US tăng lên 1% thì về trung bình làm phát của Anh sẽ tăng lên 1.345% - Nhật và US: Dependent Variable: NHAT Method: Least Squares Date: 05/10/10 Time: 21:22 Sample: 1960 1980 Included observations: 21 Variable Coefficient Std. Error t-Statistic Prob. C 5.795073 0.866538 6.687612 0.0000 NHATLP 0.698147 0.177928 3.923768 0.0009 R-squared 0.447610 Mean dependent var 7.347619 Adjusted R-squared 0.418536 S.D. dependent var 4.632992 S.E. of regression 3.532831 Akaike info criterion 5.452469 Sum squared resid 237.1370 Schwarz criterion 5.551947 Log likelihood -55.25092 F-statistic 15.39596 Durbin-Watson stat 0.534453 Prob(F-statistic) 0.000912 NHAT = 5.795072835 + 0.6981471192*NHATLP Khi lạm phát của US tăng lên 1% thì về trung bình làm phát của Nhật sẽ tăng lên 0.7%. -Đức va US:
  10. Dependent Variable: DUC Method: Least Squares Date: 05/10/10 Time: 21:23 Sample: 1960 1980 Included observations: 21 Variable Coefficient Std. Error t-Statistic Prob. C 4.860462 0.627216 7.749263 0.0000 DUCLP 0.457815 0.142581 3.210916 0.0046 R-squared 0.351757 Mean dependent var 4.638095 Adjusted R-squared 0.317639 S.D. dependent var 3.458248 S.E. of regression 2.856691 Akaike info criterion 5.027598 Sum squared resid 155.0530 Schwarz criterion 5.127076 Log likelihood -50.78978 F-statistic 10.30998 Durbin-Watson stat 1.202348 Prob(F-statistic) 0.004600 DUC = 4.860462352 + 0.4578146464*DUCLP Khi lạm phát của US tăng lên 1% thì về trung bình làm phát của Đức sẽ tăng lên 0.46%. -Pháp Và US: Dependent Variable: PHAP Method: Least Squares Date: 05/10/10 Time: 21:25 Sample: 1960 1980 Included observations: 21 Variable Coefficient Std. Error t-Statistic Prob. C 6.251776 1.212106 5.157778 0.0001 PHAPLP 0.290800 0.574747 0.505961 0.6187 R-squared 0.013294 Mean dependent var 6.714286 Adjusted R-squared -0.038637 S.D. dependent var 3.579146 S.E. of regression 3.647635 Akaike info criterion 5.516428 Sum squared resid 252.7996 Schwarz criterion 5.615906 Log likelihood -55.92249 F-statistic 0.255996 Durbin-Watson stat 0.273299 Prob(F-statistic) 0.618704 PHAP = 6.25177575 + 0.2907996784*PHAPLP Khi lạm phát của US tăng lên 1% thì về trung bình làm phát của Pháp sẽ tăng lên 0.29%.
  11. Nhận xét chung: Từ kết quả trên ta thấy tỉ lệ lạm phát của Anh chịu ảnh hưởng nhiều bởi tỉ lệ lạm phát của Hoa Kì ( tăng lên 1.345%) , còn tỉ lệ lạm phát của Nhật ( 0.7%) và Đức (0.46%), Pháp ( 0.29%) ít chịu ảnh hưởng bởi tỉ lệ lạm phát của Hoa Kì. Bài tập 2 : Nhà phân tích học viện nghiên cứu Anh ngữ đã thu thập dữ liệu từ 8 sinh viên khác nhau trong một lớp . Bảng dữ liệu gốc được trình bài như sau : Sinh Điểm Điểm điểm viên tóan khoa học Anh Văn 1 13.5 9.9 13.3 2 13.7 6.8 10 3 7 5.5 8.9 4 7.4 5.7 2.4 5 13.2 10.3 8.2 6 7.3 1.8 6.3 7 5.2 5.2 7.7 8 8.4 6.9 2.9 Người ta muốn xem xét xem là có mối quan hệ nào giữa điểm môn Anh văn và điểm môn Khoa học của sinh viên . Cụ thể là chúng ta có thể dựa vào điểm môn Khoa học và của sinh viên có thể dự đóan điểm của môn Anh văn hay không - Cũng như dựa vào điểm môn Tóan của sinh viên có thể dự đóan điểm của môn Anh văn hay không ? Cho từng cặp môn học tương ứng , anh chị : a. Ươc lượng mô hình hồi qui tuyến tính cho tập dữ liệu nói trên? - Đọc và nhận xét phương trình hồi qui của anh chị? - Đưa ra kết luận tổng quát ? Điểm môn Khoa học và của sinh viên có thể dự đóan điểm của môn Anh văn hay không: Dependent Variable: DIEMANHVAN Method: Least Squares Date: 05/11/10 Time: 21:13 Sample: 1 8 Included observations: 8
  12. Variable Coefficient Std. Error t-Statistic Prob. C 3.762656 3.422463 1.099400 0.3137 DIEMKHOAHOC 0.568114 0.489567 1.160442 0.2900 R-squared 0.183299 Mean dependent var 7.462500 Adjusted R-squared 0.047182 S.D. dependent var 3.605130 S.E. of regression 3.519055 Akaike info criterion 5.566580 Sum squared resid 74.30247 Schwarz criterion 5.586440 Log likelihood -20.26632 F-statistic 1.346627 Durbin-Watson stat 1.325655 Prob(F-statistic) 0.289950 DIEMANHVAN = 3.762656345 + 0.5681141889*DIEMKHOAHOC Khi điểm khoa học tăng lên một điểm thì về trung bình điểm môn anh văn sẽ tăng lên 0.56 điểm. Điểm môn Tóan của sinh viên có thể dự đóan điểm của môn Anh văn hay không: Dependent Variable: DIEMANHVAN Method: Least Squares Date: 05/11/10 Time: 21:13 Sample: 1 8 Included observations: 8 Variable Coefficient Std. Error t-Statistic Prob. C 1.691257 3.486802 0.485045 0.6448 DIEMTOAN 0.609907 0.348935 1.747907 0.1311 R-squared 0.337396 Mean dependent var 7.462500 Adjusted R-squared 0.226962 S.D. dependent var 3.605130 S.E. of regression 3.169724 Akaike info criterion 5.357484 Sum squared resid 60.28290 Schwarz criterion 5.377344 Log likelihood -19.42994 F-statistic 3.055180 Durbin-Watson stat 2.104833 Prob(F-statistic) 0.131069 DIEMANHVAN = 1.691256533 + 0.6099068394*DIEMTOAN Khi điểm toán tăng lên một điểm thì về trung bình điểm môn anh văn sẽ tăng lên 0.6 điểm.
  13.  Kết Luận tổng quát: Ta thấy hệ số tương quan của 2 mô hình thấp (R2<0.5) do đó nó không giải thích dược tất cả các biến đưa váo trong mô hình. Có nghĩa là điểm môn Khoa Học và môn Toán ảnh hưởng rất ít đến điểm của môn Anh văn. b. Giải thích ý nghĩa của hệ số tương quan ? Giải thích ý nghĩa của hệ số độ dốc và tung độ gốc của phương trình hồi qui ? Ý nghĩa của hệ số tương quan: R2 đo lường mối tương quan giữa biến phụ thuộc với biến độc lập. R2 ở 2 mô hình trên đều rất nhỏ (18.32 % và 33.74% ) chứng tỏ điểm của môn Anh Văn không phụ thuộc nhiều vào môn khoa học hay môn toán. Ý nghĩa của hệ số độ dốc và tung độ gốc: DIEMANHVAN = 3.762656345 + 0.5681141889*DIEMKHOAHOC + b1= 3.762656345: khi điểm môn Khoa Học bằng không thì về trung bình điểm môn Anh Văn bằng 3.76 + b2 = 0.5681141889 : khi điểm môn Khoa Học tăng thêm 1 điểm thì về trung bình điểm môn Anh Văn tăng thêm 0.57 điểm DIEMANHVAN = 1.691256533 + 0.6099068394*DIEMTOAN + b1= 1.691256533: khi điểm môn Khoa Học bằng không thì về trung bình điểm môn Anh Văn bằng 1.69 + b2 = 0.6099068394: khi điểm môn Khoa Học tăng thêm 1 điểm thì về trung bình điểm môn Anh Văn tăng thêm 0.61 điểm Bài tập 3: Ta có tập dữ liệu sau bao gồm 64 quan sát của các quốc gia với các biến số được giải thích bên dưới của bảng số liệu : obs CM FLR PGNP TFR obs CM FLR PGNP TFR
  14. 1 128 37 1870 6.66 33 142 50 8640 7.17 2 204 22 130 6.15 34 104 62 350 6.6 3 202 16 310 7 35 287 31 230 7 4 197 65 570 6.25 36 41 66 1620 3.91 5 96 76 2050 3.81 37 312 11 190 6.7 6 209 26 200 6.44 38 77 88 2090 4.2 7 170 45 670 6.19 39 142 22 900 5.43 8 240 29 300 5.89 40 262 22 230 6.5 9 241 11 120 5.89 41 215 12 140 6.25 10 55 55 290 2.36 42 246 9 330 7.1 11 75 87 1180 3.93 43 191 31 1010 7.1 12 129 55 900 5.99 44 182 19 300 7 13 24 93 1730 3.5 45 37 88 1730 3.46 14 165 31 1150 7.41 46 103 35 780 5.66 15 94 77 1160 4.21 47 67 85 1300 4.82 16 96 80 1270 5 48 143 78 930 5 17 148 30 580 5.27 49 83 85 690 4.74 18 98 69 660 5.21 50 223 33 200 8.49 19 161 43 420 6.5 51 240 19 450 6.5 20 118 47 1080 6.12 52 312 21 280 6.5 21 269 17 290 6.19 53 12 79 4430 1.69 22 189 35 270 5.05 54 52 83 270 3.25 23 126 58 560 6.16 55 79 43 1340 7.17 24 12 81 4240 1.8 56 61 88 670 3.52 25 167 29 240 4.75 57 168 28 410 6.09 26 135 65 430 4.1 58 28 95 4370 2.86 27 107 87 3020 6.66 59 121 41 1310 4.88 28 72 63 1420 7.28 60 115 62 1470 3.89 29 128 49 420 8.12 61 186 45 300 6.9 30 27 63 19830 5.23 62 47 85 3630 4.1 31 152 84 420 5.79 63 178 45 220 6.09 32 224 23 530 6.5 64 142 67 560 7.2 Trong đó: - CM : Tỉ lệ tử vong của trẽ sơ sinh (%) - FLR : Tỉ lệ biết chử của dân số (%) - PGNP : GNP bình quân đầu người (Đô la) - TFR : Tỉ lệ sinh chung của dân số (%)
  15. 1. Hãy giải thích mối quan hệ giữa tỉ lệ tử vong của trẻ sơ sinh và các biến khác đã cho, bằng những lập luận mang tính cách kinh tế và lô gic ? - Sau đó vẽ biểu đồ phân tán giữa CM và FLR; CM và PGNP; CM và TFR. Rồi từ đó đối chiếu đồ thị với các giải thích của anh chị lúc ban đầu ( nêu lên sự phù hợp và không phù hợp với lời giải thích ban đầu) - Tỷ lệ tử vong và tỷ lệ biết chữ: Hai biến này có mối quan hệ nghịch biến, nếu tỷ lệ biết chữ thấp thì tỷ lệ tử vong sẽ cao và ngược lại. - Tỷ lệ tử vong và GNP bình quân đầu người: Khi GNP bình quân đầu người tăng lên thì tỷ lệ tử vong của trẻ sơ sinh sẽ giảm đi vì khi đó trẻ sẽ được chăm sóc tốt và toàn diện hơn. Ngược lại - Tỷ lệ tử vong và tỷ lệ sinh chung của dân số: Nếu tỷ lệ sinh chung tăng lên thì-> dân số tăng lên-> gia đình sẽ đông con hơn->nghèo->không chăm sóc đầy đủ cho con cái->tỷ lệ tử vong tăng. Biểu đồ phân tán giữa CM và FLR: CM va PGNP 320 280 240 200 CM 160 120 80 40 0 0 4000 8000 12000 16000 20000 PGNP -Phù hợp với lời gải thích ban đầu.
  16. CM va TFR 320 280 240 200 CM 160 120 80 40 0 1 2 3 4 5 6 7 8 9 TFR - Không phù hợp với lời giải thích ban đầu vì : qua biểu đồ cho thấy khi tỷ lệ sinh tăng ( giảm ) tỷ lệ tử cũng tăng ( giảm ) theo. Đây là mối quan hệ tỉ lệ thuận CM và FLR
  17. 320 280 240 200 CM 160 120 80 40 0 0 20 40 60 80 100 FLR Qua đồ thị cho thấy tỉ lệ biết chữ của dân số càng cao thì tỉ lệ tử vong của trẻ sơ sinh càng thấp và ngược lại. Phù hợp với lời giải thích ban đầu. 2. Anh chị hãy xây dựng mô hình hồi qui đơn cho CM va PGNP . Nhận xét các thông tin chính từ mô hình nầy như ý nghĩa thống kê của hệ số hồi qui, hệ số xác định R2 . Dependent Variable: CM Method: Least Squares Date: 05/11/10 Time: 23:05 Sample: 1 64 Included observations: 64 Variable Coefficient Std. Error t-Statistic Prob. C 157.4244 9.845583 15.98935 0.0000 PGNP -0.011364 0.003233 -3.515661 0.0008 R-squared 0.166217 Mean dependent var 141.5000 Adjusted R- squared 0.152769 S.D. dependent var 75.97807 S.E. of regression 69.93413 Akaike info criterion 11.36374
  18. Sum squared resid 303228.5 Schwarz criterion 11.43120 Log likelihood -361.6396 F-statistic 12.35987 Durbin-Watson stat 1.931458 Prob(F-statistic) 0.000826 CM = 157.4244406 - 0.01136445358*PGNP Khi GNP bình quân đầu người tăng lên 1USD thì Tỷ lệ tử vong của trẻ sơ sinh giảm 1.1%. Hệ số R2=16.62% là không tốt vì không giải thích được các biến đưa vào mô hình. Hay nói cách khác tỉ lệ tử vong của trẻ sơ sinh ít chịu ảnh hưởng bởi GNP bình quân đầu người mà phụ thuộc vào nhiều nhân tố khác nữa. 3. Hãy xây dựng mô hình hồi qui bội cho quan hệ CM; FLR và PGNP. Nhận xét thông tin chính từ mô hình nầy , như ý nghĩa thống kê của hệ số , hệ số xác định R2. Dependent Variable: CM Method: Least Squares Date: 05/11/10 Time: 23:06 Sample: 1 64 Included observations: 64 t- Variable Coefficient Std. Error Statistic Prob. 22.7410 C 263.6416 11.59318 9 0.0000 - 10.6292 FLR -2.231586 0.209947 7 0.0000 - 2.81870 PGNP -0.005647 0.002003 3 0.0065 Mean dependent 141.500 R-squared 0.707665 var 0 Adjusted R- 75.9780 squared 0.698081 S.D. dependent var 7
  19. Akaike info 10.3469 S.E. of regression 41.74780 criterion 1 10.4481 Sum squared resid 106315.6 Schwarz criterion 1 73.8325 Log likelihood -328.1012 F-statistic 4 Durbin-Watson 0.00000 stat 2.186159 Prob(F-statistic) 0 CM = 263.6415856 - 2.231585732*FLR - 0.005646594817*PGNP Trong điều kiện các yếu tố khác không đổi, khi GDP đấu người tăng lên 1 USD thì tỷ lệ tử vong của trẻ sơ sinh tăng giảm đi 5%. Hệ số R2 = 70.76% được xem là không tốt vì không giải thích được tất cả các biến đưa vào mô hình. 4 . So sánh mô hình đơn và mô hình bội anh chị có nhận xét gì về hệ số hồi qui tìm được của biến PGNP , nếu phải chọn hệ số PGNP của mô hình nào để giải thích tác động của PGNP lên CM ? Tại sao? CM = 157.4244406 - 0.01136445358*PGNP CM = 263.6415856 - 2.231585732*FLR - 0.005646594817*PGNP - Nhận xét: hệ số hồi quy của biến PGNP của mô hình đơn > hệ số hồi quy PGNP cảu mô hình đa biến. - Chọn mô hình 2 vì: ta thấy hệ số của FLR < α nên ta bác bỏ H0 tức hệ số FLR có ý nghĩa thống kê. ( Kiếm định hệ số Prob ) 5. Hồi qui CM cho tất cả các biến trong tập dữ liệu ? Nhận xét va cho ý kiến của anh chị? Dependent Variable: CM Method: Least Squares Date: 05/11/10 Time: 23:17 Sample: 1 64 Included observations: 64 Variable Coefficient Std. Error t-Statistic Prob. C 168.3067 32.89165 5.117003 0.0000
  20. FLR -1.768029 0.248017 -7.128663 0.0000 PGNP -0.005511 0.001878 -2.934275 0.0047 TFR 12.86864 4.190533 3.070883 0.0032 R-squared 0.747372 Mean dependent var 141.5000 Adjusted R- squared 0.734740 S.D. dependent var 75.97807 S.E. of regression 39.13127 Akaike info criterion 10.23218 Sum squared resid 91875.38 Schwarz criterion 10.36711 Log likelihood -323.4298 F-statistic 59.16767 Durbin-Watson stat 2.170318 Prob(F-statistic) 0.000000 CM = 168.3066897 - 1.768029221*FLR - 0.00551122506*PGNP + 12.86863633*TFR - Trong điều kiện các yếu tố khác không đổi thì khi FLR tăng lên 1% thì về trung bình CM giảm 1.768%, PGNP tăng lên 1usd thì về trung bình CM giảm 0.0055%, TFR tăng lên 1% thì về trung bình CM cũng tăng lên 12.8686%. - R2 = 0.747372 cao hơn các mô hình trên, cho thấy mức độ phù hợp này khá cao, có ý nghĩa thống kê hơn cả các mô hình trên. Bài 4 :Ta có tập dữ liệu sau: obs AGE ALC EDU EDU HEX INC MOR PHY POV TOB URB D C 1 2 C C T S C 1 0.122 1.9 0.565 0.122 1620 1067 934.9 142 0.189 114.5 0.675 3 2 0.034 3.86 0.825 0.211 1667 1818 396.2 127 0.107 128.9 0.417 7 3 0.123 3.08 0.724 0.174 1473 1279 771.5 184 0.132 107.1 0.764 5 4 0.149 1.78 0.555 0.108 1552 1047 1022.8 136 0.19 125.8 0.397 6 5 0.106 3.19 0.735 0.196 2069 1606 766 235 0.114 102.8 0.957 5 6 0.09 3.09 0.786 0.23 1664 1481 625.7 196 0.101 112.4 0.817
Đồng bộ tài khoản