Bài tập toán ôn thi đại học khối B có lời giải hướng dẫn

Chia sẻ: Tran Quang Nghia | Ngày: | Loại File: PDF | Số trang:3

0
190
lượt xem
41
download

Bài tập toán ôn thi đại học khối B có lời giải hướng dẫn

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Bài tập ôn thi môn Toán khối B năm học 2009. Thời gian làm bài 180 phút.

Chủ đề:
Lưu

Nội dung Text: Bài tập toán ôn thi đại học khối B có lời giải hướng dẫn

  1. www.saosangsong.com.vn Năm học 2009-2010 1 NHÁY B 2009. Thời gian làm bài : 180 phút Câu 1 (2 điểm ). Cho hàm số : y = - x4 + 2x2 + 3 a) Khảo sát biến thiên hàm số và vẽ đồ thị (C). b) Với giá trị nào của m, phương trình : (x2 + 1)|x2 – 3| = m có 6 nghiệm phân biệt . Câu 2 (2 điểm ) : 1. Giải phương trình : cosx - 2sin2x cosx + 2 = 3 sin 3x + 2(2 cos 2 2x +cos3 x) ⎧x y + x + 2 = 8 y 2. Giải hệ: ⎨ 2 2 ⎩ x y + 4 + 2xy = 19 y 2 1 2 + ln(x+1) Câu 3 (1 điểm ). Tính tích phân : I = ∫ dx 0 (x +3) 2 Câu 4 (1 điểm ). Cho lăng trụ xiên ABC. A’B’C’ có cạnh bên AA’ = 2a và hợp với đáy một góc 600. Hình chiếu của điểm A’ lên (ABC) trùng với I là tâm đường tròn nội tiếp với đáy. Đáy ABC là tam giác vuông tại A và góc B = 600. Tính thể tích khối chóp ABCC’. Câu 5 (1 điểm ). Cho hai số x, y dương thay đổi sao cho : x2 + y2 + 3xy ≥ 5, tìm GTNN của biểu thức : T = x 4 + y4 + x2y2 - 2(x2 + y2) + 8 Câu 6 (3 điểm ). 1. Trong mặt phẳng Oxy, tìm toạ độ tâm I và bán kính R của đường tròn (C) biết nó qua gốc toạ độ O, tiếp xúc với đường thẳng d: x – y + 2 = 0 và tiếp xúc ngoài với đường tròn (C’): (x – 2)2 + y2 = 4. 2. Trong không gian Oxyz, cho điểm A(1 ; 1; 2), B(0 ; 1 ; 1); C(2 ; 1 ; 0); D(- 4; - 3 ; 1). Viết phương trình mặt phẳng qua A, B sao cho khoảng cách từ D đến mặt phẳng gấp 2 lần khoảng cách từ C đến mặt phẳng . 2x 2 - x - 6 3. Gọi © là đồ thị hàm số : y = . Tìm sao cho đường thẳng y = x + m cắt © tại hai điểm M. x +1 N sao cho độ dài MN nhỏ nhất. y GIẢI VẮN TẮT Câu 1. 4 a) y’ = - 4x3 + 4x = 0 x = 0 hay x = ± 1. 3 b) f(x) = - x4 + 2x2 + 3 = - (x2 + 1)(x2 - 3). 2 Phương trình |f(x ) | = m . Số nghiệm là số giao điểm của đường thẳng y = m và đồ thị hình dưới . 1 Phương trình có 6 nghiệm 3
  2. www.saosangsong.com.vn Năm học 2009-2010 2 Câu 2. 1. cosx (1 – 2cos2 x) – sin2xcosx - 3 sin 3x = 2(2cos2 2x – 1) cos x cos2 x - sin2xcos x - 3 sin 3x = 2cos4x π cos 3 x - 3 sin 3x = 2 cos 4 x cos(3x − ) = cos 4x 3 2. Chia hai vế của phương trình đầu cho y và phương trình sau cho y2 vì y = 0 không là nghiệm : ⎧ x 2 ⎧ 2 x ⎪ x + + =8 ⎪x + y + y = 8 ⎪ y y ⎪ ⎨ ⎨ 2 ⎪ x 2 + 4 + 2x =19 ⎪⎛ x + 2 ⎞ − 2x = 19 ⎪ ⎩ y2 y ⎪⎜ ⎟ ⎩⎝ y⎠ y 2 ⎛ 2⎞ ⎛ 2⎞ 2 2 Thế: ⎜ x + ⎟ + 2 ⎜ x + ⎟ − 35 = 0 x + = 5 hay x + = −7 ⎝ y⎠ ⎝ y⎠ y y ........ Câu 3. dx dx −1 u = 2 + ln(x + 1), dv = => du = ;v = (x +3) 2 x +1 x +3 1 ⎡ −1 ⎤ 1 dx => I = ⎢ .ln(x + 1) ⎥ + ∫ ... ⎣ (x + 3) ⎦ 0 0 (x + 1)(x+3) Câu 4. A’ C’ B B’ C A A C B Ta có AI = AA’ cos600 = a. => bán kình đường tròn nội tiếp là a/ 2 . 3 Chiều cao lăng trụ là A’I = AA’sin600 = a . 2 Ta có: S = pr AB. AC = (AB + AC + BC). R
  3. www.saosangsong.com.vn Năm học 2009-2010 3 a Mà : AC = AB 3, BC = 2 AB , suy ra: AB2 3 = AB(3 + 3). 2 a( 3 + 1) => AB = => SABC = AB2 3 / 2 = 2 Ta có: VABCC ' = VA ' ABC = S ABC . A ' H x 2 + y2 5 Câu 5. Từ giả thiết và : x y ≤ , ta suy ra : 5 ≤ .(x 2 +y 2 ) x2 + y2 ≥ 2 2 2 1 T = (x2 + y2)2 - x2 y2 - 2(x2 + y2) + 8 ≥ (x2 + y2)2 − (x 2 +y 2 ) 2 - 2(x2 + y2) + 8 4 ≥ 3t2 / 4 - 2t + 8 = f(t) với t = x2 + y2 ≥ 2. f’(t) = 3t/2 – 2 > 0 khi t > 2 Hàm số f(t) đồng biết khi t ≥ 2 do đó f(t) ≥ f(2) = 7 Vậy minT = 7 khi x = y = 1 . Câu 6. | a −b+ 2| 1. I(a ; b), ta có: d(I; d) = R = R (1) 2 (C’) có tâm J(2 ; 0), bán kính 2, do đó : IJ = R + 2 (a – 2)2 + b2 = (R + 2)2 2 2 2 a + b – 4a + 4 = R + 4R + 4 (2) Ngoài ra: IO = R a2 + b2 = R2 . (3). Từ (2) và (3) : a = - R => b = 0. Thế vào (1) : (- R – 0 + 2)2 = 2R2 R2 + 4R – 4 = 0 R = 2( 2 − 1) . Tâm I(2(1 - 2 ); 0) 2. ax + by + cz + d = 0 : a + b + 2c + d = 0 (1) b + c + d = 0 (2) 2 | 2a + b + d | | −4a − 3b + c + d | = (3) a 2 + b2 + c2 a 2 + b2 + c2 (1) – (2): a + c = 0 => d = - b - c Thế vào (3) : 2| - 3c| = |4c – 4b| - 6c = 4c – 4b hay – 6c = 4b – 4c b = 5c/2 hay c = - 2b * Chọn c = - 2 : 2x + y – 2z + 1 = 0 hay 2x - 5y – 2z + 7 = 0 3. PTHĐGĐ: 2x 2 - x − 6 = (x + m)(x + 1) x2 - (m + 2) x – m – 6 = 0 Δ = m 2 + 8m + 28 > 0 Δ MN2 = 2(x2 – x1)2 = 2. 2 = 2. (m2 + 8m + 28) = 2[(m + 4)2 + 12] a Vậy min MN = 24 m = - 4.

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản