Các bài toán bất đẳng thức (Bài tập và hướng dẫn giải)
lượt xem 66
download

Các bài toán bất đẳng thức (Bài tập và hướng dẫn giải)

Tham khảo tài liệu 'các bài toán bất đẳng thức (bài tập và hướng dẫn giải)', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Các bài toán bất đẳng thức (Bài tập và hướng dẫn giải)
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 16 tháng 05 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 16-05 1, ( x − 3) x 2 − 4 ≤ x 2 − 9 5, x +1 > 3 − x + 4 2, x + 3 ≥ 2x − 8 + 7 − x 6, 5 x 2 + 10 x + 1 ≥ 7 − x 2 − 2 x 1 − 1 − 4x2 3,
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG CÁC BTVN • BTVN NGÀY 12-05 1 3 2x + = y x 1, - đây là hệ đối xứng loại II 2 y + 1 = 3 x y - Điều kiện: x ≠ 0; y ≠ 0 1 1 x = y - Trừ vế theo vế ta được: 2( x − y) = 4 − ⇔ x y xy = −2 2 Với x = y , hệ tương đương với 2 x = ⇔ x = ±1 x −2 x 3 3x 3 x = 2 → y = − 2 Với xy = −2 ⇒ y = , thế vào pt đầu được: 2 x − = ⇔ = ⇔ x 2 x 2 x x = − 2 → y = 2 { - Vậy hệ có nghiệm: ( x; y ) = ( 1;1) , ( −1; −1) , ( )( 2; − 2 , − 2, 2 )} 1 1 1 x − y = y − x ( x − y ) 1 + = 0 2, ⇔ xy 2 y = x3 + 1 2 y = x + 1 3 −1 ± 5 −1 ± 5 ⇒ ĐS: ( x; y ) = ( 1;1) ; 2 ; 2 x(3 x + 2 y )( x + 1) = 12 ( 3 x + 2 y ) ( x 2 + x ) = 12 3, 2 ⇔ x + 2 y + 4x − 8 = 0 ( 3 x + 2 y ) + ( x + x ) = 8 2 Page 2 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 uv = 12 u = 6 u = 2 Đặt u = 3 x + 2 y; v = x 2 + x suy ra: ⇔ ∨ u + v = 8 v = 2 v = 6 11 ( x; y ) = ( −2;6 ) , 1; 3 Giải từng trường hợp ta dẫn tới đáp số: , ( 2; −2 ) , −3, 2 2 x2 + y 2 + x + y = 4 ( x + y ) 2 + x + y − 2 xy = 4 x + y = 0 ∨ x + y = −1 4, ⇔ ⇔ x( x + y + 1) + y ( y + 1) = 2 xy = −2 xy = −2 ⇒ ĐS: ( x; y ) = {( )( ) 2; − 2 , − 2, 2 , ( −2,1) , ( 1, −2 ) } x2 + y2 = 5 5, 4 x − x y + y = 13 2 2 4 - Đây là hệ đối xứng loại I đối với x 2 và y 2 - Đáp số: ( x; y ) = { ( 2; ±1) , ( −2; ±1) , ( 1; ±2 ) , ( −1, ±2 ) } 3x 2 − 2 xy = 16 6, 2 - Đây là hệ đẳng cấp bậc 2 x − 3xy − 2 y = 8 2 - Nhận xét x = 0 không thỏa mãn hệ, ta xét x ≠ 0 , đặt y = tx x 2 ( 3 − 2t ) = 16 Hệ trở thành: 2 x ( 1 − 3t − 2t ) = 8 2 - Giải hệ này tìm t, x - Đáp số: ( x; y ) = { ( 2; −1) , ( −2,1) } x2 + 1 ( x 2 + 1) + y ( y + x ) = 4 y y + ( y + x) = 4 x2 + 1 =1 7, ⇔ 2 ⇔ y ( x + 1) ( y + x − 2 ) = y x + 1 ( y + x − 2) = 1 y + x = 3 2 y ⇒ ĐS: ( x; y ) = { ( 1; 2 ) ; ( −2;5) } Page 3 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 1 x 1 x x+ + =7 x + + = 7 xy + x + 1 = 7 y y y y y 8, 2 2 ⇔ ⇔ x y + xy + 1 = 13 y 2 2 x 2 + 1 + x = 13 1 x y2 y x + y − y = 13 3 1 x ( x + y + 1) − 3 = 0 ( x + y ) − x = −1 x + y = 2 x + y = 2 9, 5 ⇔ ⇔ 1 ∨ ( x + y ) − 2 + 1 = 0 ( x + y ) 2 − 5 = −1 2 x =1 1 = 1 x x 2 x 2 3 ⇒ ĐS: ( x; y ) = ( 1;1) ; 2; − 2 2 xy + 3x + 4 y = −6 ( x + 2 ) ( 2 y + 3) = 0 10, ⇔ 2 x + 4 y + 4 x + 12 y = 3 x + 4 y + 4 x + 12 y = 3 2 2 2 1 3 3 3 ⇒ ĐS: ( x; y ) = −2; ; −2; − ; 2; − ; −6; − 2 2 2 2 x 2 − xy + y 2 = 3( x − y ) x 2 − xy + y 2 = 3( x − y ) x 2 − xy + y 2 = 3( x − y ) 11, 2 ⇔ 2 ⇔ y x + xy + y = 7( x − y ) x = 2 y ∨ x = 2 2 2 x − 5 xy + 2 y = 0 2 2 ⇒ ĐS: ( x; y ) = { ( 0;0 ) ; ( 1; 2 ) ; ( −1; −2 ) } Page 4 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 12, x3 − 8 x = y 3 + 2 y x3 − y 3 = 8 x + 2 y (1) 2 ⇔ 2 x − 3 = 3 ( y + 1) 2 x − 3 y = 6(2) 2 x3 − 8 x = 0 x ( x2 − 8) = 0 x = 0 *) Xét y = 0 ⇒ 2 ⇔ ⇔ 2 (Vô lý) x −3 = 3 x = 6 2 x =6 *) Chia 2 vê ' (1) cho y 3 và 2 vê ' (2) cho y 2 ta có : x 3 x y 3 8t + 2 − 1 = 8 3 + 2 3 t −1 = 2 y y y x y t2 − 3 .Coi : t = ⇒ ⇒ t 3 − 1 = (8t + 2). y t 2 − 3 = 6 6 2 x 6 y −3 = 2 y 2 y t = 0 ⇔ 3t 3 − 3 = (4t + 1)(t 2 − 3) ⇔ t 3 + t 2 − 12t = 0 ⇔ t (t 2 + t − 12) = 0 ⇔ t = −4 t = 3 +) t = 0 ⇒ x = 0 ⇒ y 2 = −2 < 0(loai ) +)t = 3 ⇒ x = 3 y ⇒ 9 y 2 − 3 y 2 = 6 ⇔ y = ±1 ⇔ (3;1), (−3; −1) 6 6 6 6 6 +)t = −4 ⇒ x = −4 y ⇒ 16 y 2 − 3 y 2 = 6 ⇒ y = ± ⇒ (−4 ; );(4 ;− ) 13 13 13 13 13 6 6 Vây S = ( ±3; ±1) , ±4 ;m 13 13 • BTVN NGÀY 14-05 1, x − 3 = 5 − 3x + 4 - Điều kiện: x≥3 Với điều kiến trên ta biến đổi về dạng: x − 3 + 3 x + 4 = 5 sau đó bình phương 2 vế, đưa về dạng cơ bản f ( x) = g ( x) ta giải tiếp. - Đáp số: x = 4 2, x 2 + 5 x + 1 = ( x + 4) x 2 + x + 1 Page 5 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 - Đặt t = x 2 + x + 1 > 0 , pt đã cho trở thành: t = x t 2 − ( x + 4) t + 4x = 0 ⇔ t = 4 Với t = x ⇔ x 2 + x + 1 = x : vô nghiệm −1 ± 61 Với t = 4 ⇔ x 2 + x − 15 = 0 ⇔ x = 2 −1 ± 61 - Vậy phương trình có nghiệm: x = 2 3, 4 18 − x = 5 − 4 x − 1 - Ta đặt u = 4 18 − x ≥ 0; v = 4 x − 1 ≥ 0 ⇒ u 4 + v 4 = 17 , ta đưa về hệ đối xứng loại I đối với u, v giải hệ này tìm được u, v suy ra x - Đáp số: Hệ vô nghiệm ( ) 4, 3 2 + x − 2 = 2 x + x + 6 ( *) - Điều kiện: x ≥ 2 8 ( x − 3) x = 3 - Ta có: ( *) ⇔ 2 ( x − 3) = ⇔ 3 x−2 + x+6 3 x − 2 + x + 6 = 4 108 + 4 254 - Đáp số: x = 3; 25 5, 2 x2 + 8x + 6 + x2 − 1 = 2x + 2 x = −1 2 x 2 + 8 x + 6 ≥ 0 - Điều kiện: 2 ⇔ x ≥ 1 x −1 ≥ 0 x ≤ −3 - Dễ thấy x = -1 là nghiệm của phương trình - Xét với x ≥ 1 , thì pt đã cho tương đương với: 2 ( x + 3) + x − 1 = 2 x + 1 Page 6 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Bình phương 2 vế, chuyển về dạng cơ bản f ( x) = g ( x) ta dẫn tới nghiệm trong trường hợp này nghiệm x = 1 - Xét với x ≤ −3 , thì pt đã cho tương đương với: −2 ( x + 3) + − ( x − 1) = 2 − ( x + 1) Bình phương 2 vế, chuyển về dạng cơ bản f ( x) = g ( x) ta dẫn tới nghiệm trong 25 trường hợp này là: x = − 7 25 - Đáp số: x = − ; ±1 7 9 6, x( x − 1) + x( x + 2) = 2 x 2 ĐS: x = 0; 8 7, 3 x+ 4 − 3 x− 3 = 1 - Sử dụng phương pháp hệ quả để giải quyết bài toán, thử lại nghiệm tìm được. - Đáp số: x = { −5; 4} 4 −2 − 14 8, x + 4 − x = 2 + 3x 4 − x → t = x + 4 − x ⇒ t = − ; 2 ⇒ x = 0; 2; 2 2 2 3 3 9, x 2 − 3x + 3 + x 2 − 3x + 6 = 3 - Đặt t = x 2 − 3 x + 3 > 0 ⇒ x 2 − 3 x + 3 = t 2 3 ≥ t - Phương trình thành: t + t + 3 = 3 ⇔ t + 3 = 3 − t ⇔ 2 2 ⇔ t =1 2 2 t + 3 = ( 3 − t ) Suy ra x − 3 x + 2 = 0 ⇔ x = { 1; 2} 2 - Vậy tập nghiệm của phương trình là x = { 1; 2} 10, x2 + 2x + 4 = 3 x3 + 4x - Điều kiện: x ≥ 0 Page 7 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 u 2 = v 2 + 4 2 u = v + 4 2 - Đặt u = x + 4 ≥ 2; v = x ≥ 0 ⇒ 2 ⇒ 2 u + 2v = 3uv ( u − v ) ( u − 2v ) = 0 2 4 Giải ra ta được x = (thỏa mãn) 3 11, 3x − 2 + x − 1 = 4 x − 9 + 2 3 x 2 − 5 x + 2 - Điều kiện: x ≥ 1 - Khi đó: 3x − 2 + x − 1 = 4 x − 9 + 2 3x 2 − 5 x + 2 Đặt t = 3x − 2 + x − 1 (t > 0) ta có: t = t 2 − 6 ⇔ t 2 − t − 6 = 0 ⇔ t = 3; t = −2(< 0) 3x − 2 + x − 1 = 3 Giải tiếp bằng phương pháp tương đương, ta được nghiệm x = 2 12, 3 2 − x = 1− x −1 - Điều kiện: x ≥ 1 u = 1 − v - Đặt u = 3 2 − x ; v = x − 1 ≥ 0 dẫn tới hệ: 3 2 u + v = 1 Thế u vào phương trình dưới được: v ( v − 1) ( v − 3) = 0 - Đáp số: x = { 1; 2;10} y3 + 1 = 2 x −1 ± 5 13, x + 1 = 2 2x − 1 3 3 → y = 2x −1 ⇒ 3 3 ⇒ x = y ⇒ x = 1; x +1 = 2 y 2 9 14, 5 x 2 + 14 x + 9 − x 2 − x − 2 = 5 x + 1 ĐS: x = −1; ;11 4 15, 2 3 3 x − 2 + 3 6 − 5 x = 8 - Giải hoàn toàn tương tự như ý bài 1.12 Page 8 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 - Đáp số: x = { −2} 16, 2 x + 7 − 5 − x = 3x − 2 2 - Điều kiện: ≤ x≤5 3 - Chuyển vế sao cho 2 vế dương, rồi bình phương 2 vế ta dẫn tới phương trình cơ bản. Sau đó giải tiếp theo như đã học. 14 - Đáp số: x = 1; 3 17, x + 2 7 − x = 2 x − 1 + − x 2 + 8 x − 7 + 1 - Điều kiện: 1 ≤ x ≤ 7 - Ta có: x + 2 7 − x = 2 x − 1 + − x 2 + 8 x − 7 + 1 x −1 = 2 x = 5 ⇔ x −1 ( ) ( x −1 − 7 − x = 2 x −1 − 7 − x ) ⇔ x −1 = 7 − x ⇔ x = 4 - Đáp số: x = { 4;5} x+3 x+3 ⇔ 2 ( x + 1) − 2 = 2 18, 2 x 2 + 4 x = 2 2 x + 3 ⇒ 2 ( x + 1) = y + 3 2 - Đặt y + 1 = 2 ( y + 1) = x + 3 2 2 −3 ± 17 −5 ± 13 - Đáp số: x = ; 4 4 19, −4 x 2 + 13 x − 5 = 3 x + 1 ⇔ − ( 2 x − 3) + x + 4 = 3 x + 1 2 ( 2 y − 3) 2 = 3 x + 1 - Đặt 2 y − 3 = 3x + 1 ⇒ − ( 2 x − 3) + x + 4 = 2 y − 3 2 Page 9 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 15 − 97 11 + 73 - Đáp số: x = ; 8 8 5 2 5 2 20, − x + 1 − x2 + − x − 1 − x2 = x + 1 4 4 - Điều kiện: x ≤ 1 1 1 - PT đã cho ⇔ 1 − x + + 1 − x2 − = x + 1 2 2 2 3 - Đáp số: x = ; −1 5 x+5 + y−2 = 7 21, ⇒ x+5 + y−2 = y+5 + x−2 ⇔ x = y y+5 + x−2 = 7 ⇒ ĐS: ( x; y ) = ( 11;11) 2x + y +1 − x + y = 1 22, 3x + 2 y = 4 u = 2 x + y + 1 ≥ 0 u − v = 1 u = 2 u = −1 - Đặt ⇒ 2 2 ⇒ ∨ v = x + y ≥ 0 u + v = 5 v = 1 v = −2 - Đáp số: ( x; y ) = ( 2; −1) 2 xy x+ = x2 + y x − 2x + 9 3 2 23, y + 2 xy = y2 + x 3 y2 − 2 y + 9 ⇒ ĐS: ( x; y ) = { ( 0;0 ) ; ( 1;1) } • BTVN NGÀY 16-05 Page 10 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 13 1, ( x − 3) x 2 − 4 ≤ x 2 − 9 ĐS: x ∈ ∪ −∞; − ∪ [ 3; ∞ ) 6 2, x + 3 ≥ 2x − 8 + 7 − x ĐS: x ∈ [ 4;5] ∪ [ 6;7 ] 1 − 1 − 4x2 4x 1 1 3, 4 x − 3 ĐS: x ∈ − ; \ { 0} x 1+ 1− 4x 2 2 2 3 1 1 4, 3 x + < 2x + − 7 → t = 2x + ≥2 2 x 2x 2x 8−3 7 1 8+3 7 ĐS: x ∈ 0; ∪ ;1 ∪ ;∞ 2 4 2 5, x +1 > 3 − x + 4 ĐS: x ∈ ( 0; ∞ ) 6, 5 x 2 + 10 x + 1 ≥ 7 − x 2 − 2 x → t = x 2 + 2 x { ĐS: x ∈ ( 1; ∞ ) ∪ ( −∞; −3) \ −1 ± 2 2 } 1 1 7, 8x2 − 6x + 1 − 4x + 1 ≤ 0 ĐS: x ∈ ; ∞ ∪ 2 4 8, 2 x − 1 + 3x − 2 < 4 x − 3 + 5 x − 4 4 - Điều kiện: x > 5 1− x 3 ( x − 1) - ( *) ⇔ 3 x − 2 − 4 x − 3 < 5 x − 4 − 2 x − 1 ⇔ < 3x − 2 + 4 x − 3 5x − 4 + 2 x −1 Nếu x ≤ 1 ⇒ VT ≥ 0 ≥ VP : BPT vô nghiệm Nếu x > 1 ⇒ VT < 0 < VP : BPT luôn đúng - Đáp số: x ∈ ( 1; ∞ ) • BTVN NGÀY 18-05 Bài 1. Tìm tham số m để phương trình: Page 11 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 1, 4 x 2 + 1 − x = m có nghiệm 2, 4 x 4 − 13x + m + x − 1 = 0 có đúng một nghiệm HDG: 1, 4 x 2 + 1 − x = m có nghiệm - Điều kiện x ≥ 0 - Đặt t = x ≥ 0 , pt đã cho thành: ( ) 2 f t = 4 t +1 − 4 t = m PT đã cho có nghiệm thì f(t)=m có nghiệm t ≥ 0 ⇔ 0 < m ≤1 2, 4 x 4 − 13 x + m + x − 1 = 0 có đúng một nghiệm - Ta có: 4 x 4 − 13 x + m + x − 1 = 0 ⇔ 4 x 4 − 13 x + m = 1 − x x ≤ 1 x ≤ 1 ⇔ 4 4 ⇔ x − 13 x + m = ( 1 − x ) 4 x − 6 x − 9 x = 1 − m, ( 1) 3 2 - PT đã cho có đúng 1 nghiệm ⇔ ( 1) có đúng 1 nghiệm thảo mãn x ≤ 1 ⇔ đồ thị hàm số y = 4 x − 6 x − 9 x với x ∈ ( −∞;1] giao với đường thẳng y = 1 − m 3 2 tại đúng 1 điểm. - Xét hàm y = 4 x − 6 x − 9 x với x ∈ ( −∞;1] , lập bảng biến thiên từ đó ta dẫn 3 2 tới đáp số của bài toán là: 1 − m < −11 ⇔ m > 10 Bài 2. Tìm tham số m để bất phương trình: m ( ) x 2 − 2 x + 2 + 1 + x(2 − x) ≤ 0 có nghiệm x ∈ 0;1 + 3 HDG: Page 12 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 m ( ) x 2 − 2 x + 2 + 1 + x(2 − x) ≤ 0 có nghiệm x ∈ 0;1 + 3 - Đặt t = x 2 − 2 x + 2 , với x ∈ 0;1 + 3 ⇒ t ∈ [ 1; 2] . Hệ trở thành: t2 − 2 m ( t + 1) + 2 − t 2 ≤ 0 ⇔ m ≤ = f ( t ) , ( *) t +1 - BPT đã cho có nghiệm x ∈ 0;1 + 3 ⇔ ( *) có nghiệm t ∈ [ 1; 2] 2 ⇔ m ≤ max f ( t ) ⇔ m ≤ [ 1;2] 3 Bài 3. Tìm tham số m để hệ phương trình: 2 x − y − m = 0 x + xy = 1 có nghiệm duy nhất HDG: 2 x − y − m = 0 có nghiệm duy nhất x + xy = 1 2 x − y − m = 0 y = 2x − m - Ta có: ⇔ x + xy = 1 x ( 2x − m) = 1− x y = 2x − m y = 2x − m ⇔ x ≤ 1 ⇔ x ≤ 1 f x = x2 − m − 2 x −1 = 0 x ( 2x − m) = ( 1− x) ( ) ( ) 2 - Hệ đã cho có nghiệm duy nhất ⇔ f(x) có duy nhất một nghiệm nhỏ hơn hoặc bằng 1, (*). Vì ∆ = ( m − 2 ) + 4 > 0, ∀m nên f(x) luôn có 2 nghiệm phân 2 biệt; do đó (*) xảy ra khi và chỉ khi af ( 1) = 2 − m ≤ 0 ⇔ m ≥ 2 - Đáp số Page 13 of 14
- TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Page 14 of 14
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Chuyên đề bất đẳng thức luyện thi Đại học - Giáo viên Lê Xuân Đại
43 p |
2121 |
1005
-
MỘT SỐ BẤT ĐẲNG THỨC ĐẠI SỐ và BÀI TOÁN GTLN & GTNN CỦA BIỂU THỨC ĐẠI SỐ TRONG CÁC ĐỀ THI CĐ - ĐH
12 p |
1151 |
485
-
(Luyện thi cấp tốc Toán) Chuyên đề bất đẳng thức và min-max_Bài tập và hướng dẫn giải
15 p |
445 |
293
-
Chuyên đề tiếp tuyến: Câu hỏi bài tập và hướng dẫn giải
24 p |
938 |
242
-
Các bài toán bất đẳng thức côsi (Bài tập và hướng dẫn giải)
9 p |
2045 |
242
-
Các bài toán về hệ số trong khai triển nhị thức Newton (Bài tập và hướng dẫn giải)
7 p |
1095 |
211
-
Các bài toán tính khoảng cách (Bài tập và hướng dẫn giải)
9 p |
1168 |
190
-
Các kĩ thuật cơ bản để chứng minh đẳng thức và tìm giá trị lớn nhất, giá trị nhỏ nhất trong các kì thi tuyển sinh ĐH, CĐ, lớp chuyên, lớp chọn
8 p |
590 |
172
-
Các bài toán dạng lượng giác của số phức (Bài tập và hướng dẫn giải)
13 p |
451 |
104
-
Chuyên đề bất đẳng thức trong tam giác
92 p |
369 |
95
-
Các bài toán chứng minh tính vuông góc (Bài tập và hướng dẫn giải)
10 p |
363 |
91
-
Phương pháp đưa về một biến trong bài toán bất đẳng thức
22 p |
220 |
90
-
Các bài toán hàm đa thức (Bài tập và hướng dẫn giải)
26 p |
157 |
54
-
Tuyển tập 300 bất đẳng thức hay từ các diễn đàn Toán học trên thế giới
58 p |
178 |
53
-
Các bài toán giải các bất PT siêu việt (Bài tập và hướng dẫn giải)
6 p |
96 |
34
-
Bài tập chuyên đề bất đẳng thức
2 p |
88 |
22
-
Ôn thi đại học môn Toán - Chuyên đề: Bất đẳng thức
20 p |
70 |
11