Các bài toán bất đẳng thức côsi (Bài tập và hướng dẫn giải)

Chia sẻ: T N | Ngày: | Loại File: DOC | Số trang:9

2
1.810
lượt xem
219
download

Các bài toán bất đẳng thức côsi (Bài tập và hướng dẫn giải)

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'các bài toán bất đẳng thức côsi (bài tập và hướng dẫn giải)', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Các bài toán bất đẳng thức côsi (Bài tập và hướng dẫn giải)

  1. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 BTVN NGÀY 15-03 Bất đẳng thức Côsi. Bài 1: Cho 3 số dương tùy ý x,y,z. x x x 3 CMR: + + ≤ 2x + y + z 2x + y + z 2x + y + z 4 Bài 2: Cho 3 số dương x,y,z thõa mãn: xyz=1 x2 y2 z2 3 CMR: + + ≥ 1+ y 1+ z 1+ x 2 Bài 3: Cho 3 số không âm tùy ý x,y,z thõa mãn: x+y+z=0. CMR: 2 + 4x + 2 + 4 y + 2 + 4z ≥ 3 3 Bài 4: Cho 3 số dương tùy ý a,b,c: a b c  Tìm Min: A = 3 4(a + b ) + 3 4(b + c ) + 3 4(c + a ) + 2  + 2+ 2 3 3 3 3 3 3 2 b c a  Bài 5: Cho 3 số dương tùy ý x,y,z. x 1  y 1  z 1  Tìm Min của: P = x +  + y +  + z +   2 yz   2 zx   2 xy  ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Hocmai.vn – Ngôi trường chung của học trò Việt 1
  2. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HDG BTVN NGÀY 15-03 Bất đẳng thức Côsi. Bài 1: Cho 3 số dương tùy ý x,y,z. x x x 3 CMR: + + ≤ 2x + y + z 2x + y + z 2x + y + z 4 Giải: Ta có: 1 1 1 1 1  = ≤  +  2x + y + z ( x + y ) + ( x + z ) 4  x + y x + z  x 1 x x   ≤  +   2x + y + z 4  x + y x + z   y 1 y y   1 x+ y y+ z x+ z 3 ⇒ ≤  +   ⇒ VT ≤  + + = x + 2y + z 4  x + y y + z   4 x+ y y+ z x+ z 4 z 1 z z  =≤  +  x + y + 2z 4  x + z y + z   Dấu “=” xảy ra khi và chỉ khi x=y=z Bài 2: Cho 3 số dương x,y,z thõa mãn: xyz=1 x2 y2 z2 3 CMR: + + ≥ 1+ y 1+ z 1+ x 2 Giải: Ta có: x2 1 + y  + ≥ x 1+ y 4  y 2 1+ z   3 + ( x + y + z ) 3( x + y + z ) − 3 9 3 xyz − 3 3 + ≥ y  ⇒ VT ≥ ( x + y + z ) − = ≥ = 1+ z 4  4 4 4 2 z2 1+ x  + ≥z 1+ x 4   Dấu “=” xảy ra khi và chỉ khi x=y=z=1 Page 2 of 9
  3. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Bài 3: Cho 3 số không âm tùy ý x,y,z thõa mãn: x+y+z=0. CMR: 2 + 4x + 2 + 4 y + 2 + 4z ≥ 3 3 Giải: Đặt: a = 4 x  a, b, c > 0 b = 4y ⇒  Và : 2 + a + 2 + b + 2 + c ≥ 3 3 (1) c = 4 z  abc = 1   1 1 1 1  Ta có : 2 + a = 1 + 1 + a ≥ 3 a ⇒ 2 + a ≥ 3.a ⇒ VT(1) ≥ 3.  a + b + c 6  3 66 6   1 ≥ 3 3. ( abc ) 18 = 3 3 Dấu “=” xảy ra khi và chỉ khi x=y=z=0 Bài 4: Cho 3 số dương tùy ý a,b,c:  a b c  Tìm Min: A = 3 4(a + b ) + 3 4(b + c ) + 3 4(c + a ) + 2  + 2+ 2 3 3 3 3 3 3 2 b c a  Giải: a b c  A = 3 4(a 3 + b3 ) + 3 4(b3 + c3 ) + 3 4(c3 + a 3 ) + 2  2 + 2 + 2  b c a  Vì :4(a 3 + b3 ) ≥ 8 (ab)3 ⇒ 3 4(a 3 + b3 ) ≥ 2 ab ⇒ 3 4(a 3 + b3 ) + 3 4(b3 + c3 ) + 3 4(c3 + a 3 ) ≥ 2 ( ) ab + bc + ca ≥ 6 3 abc  a b c  1  1  Và 2  2 + 2 + 2  ≥ 6 3 ⇒ A ≥ 6  3 abc + 3  ≥ 12 ⇒ Min A = 12  b c a  abc  abc  Dấu “=” xảy ra khi và chỉ khi a=b=c=1. Bài 5: Cho 3 số dương tùy ý x,y,z. x 1  y 1  z 1  Tìm Min của: P = x +  + y +  + z +   2 yz   2 zx   2 xy  Giải: Page 3 of 9
  4. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Ta có: x2 + y 2 + z 2 x2 y2 z2 x2 + y2 + z 2 x2 + y2 + z 2 1 1  P= + + + = + = ( x2 + y 2 + z 2 )  +  2 xyz xyz xyz 2 xyz  2 xyz  1 1 1 1 1  3 1 Vì : x 2 + y 2 + z 2 ≥ 3 3 ( xyz ) 2 Và + = 1 + + ≥ .3 2 xyz 2  xyz xyz  2 ( xyz ) 2 3 1 9 9 ⇒ P ≥ 3 3 ( xyz ) 2 . . = ⇒ MinP = 2 3 ( xyz ) 2 2 2 Dấu “=” xảy ra khi và chỉ khi x=y=z=1 BTVN NGÀY 17-03 Sử dụng chiều biến thiên. Bài 1: Tìm Min, Max của: xy 2 A= (x 2 ( + 3 y 2 ) x + x 2 + 12 y 2 ) Giải: 1 y Ta có : A = . Coi : t =   x 2   y  2 x    + 3   1 + 1 + 12     y   x     ⇒ A= 1 = t2 = ( t 2 1 − 1 + 12t 2 ) 1  (  2 + 3  1 + 1 + 12t t  2 ) ( 1 + 3t ) ( 1 + 2 1 + 12t 2 ) ( 1 + 3t ) ( −12t ) 2 2 1 1 + 12t 2 − 1 u −1 = . Coi : u = 1 + 12t 2 (u ≥ 1) ⇒ 3 A = 2 = f (u ) 3 12t + 4 2 u +3 u = −1 1 1 ⇒ f '(u ) = 0 ⇔  ⇒ 3 A = f (u ) ≤ f (3) = ⇒ MaxA = . u = 3 6 18 Và : lim f (u ) = 0 ⇒ MinA = 0 u →∞ Bài 2: Cho 3 số thực thõa mãn: x2 + y2 + z2 =1. Tìm Min, Max của: P = ( x + y + z ) − ( xy + yz + zx) Page 4 of 9
  5. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Giải: Đặt: t = x + y + z ⇒ t 2 ≤ 3( x 2 + y 2 + z 2 ) = 3 ⇒ t ∈  − 3; 3    t 2 − 1 −t 2 + 2t + 1 Và P = t − = = f (t ) ⇒ f '(t ) = 0 ⇔ t = 1 ∈  − 3; 3    2 2  MaxP = f (1) = 1  Qua BBT ta có :   MinP = f (− 3) = −( 3 + 1)  Bài 3: Cho 2 số dương x,y thõa mãn: x+y=5/4. Tìm Min của: 4 1 A= + x 4y Giải: Ta có: 5 16 y + − y 16 y + x 4 60 y + 5 A= = = . 4 xy 5 4 y (5 − 4 y ) 4 y( − y) 4 a = 4 y 0 < a , b < 5 16a + b 16 1 16 1 Coi :  ⇒ Và : A = = + = + = f (a) b = 5 − 4 y a + b = 5 ab b a 5−a a a = 0 16 1 16 ⇒ f '(a) = − 2 =0⇒  5 ⇒ MinA = f (1) = + 1 = 5 ( 5 − a) 2 a a = − 4  3 Dấu “=” xảy ra khi và chỉ khi x=1; y=1/4 Bài 4: CMR: Với mọi tam giác ABC ta luôn có: A A A 1 + cos 1 + cos 1 + cos 2+ 2+ 2 >3 3 A A A Giải: x2 Xét hàm số: y = + cos x − 1 2 Page 5 of 9
  6. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408  π y ' = x − sin x và y '' = 1 − cos x > 0; ∀x ∈  o;   2 x2 Ta thấy y’ đồng biến và ta có: y > 0. Vậy ta có: cos x > 1 − 2 Áp dụng cho các góc A/2, B/2 , C/2 ta có: A A2 B B2 C C2 cos > 1 − ; cos > 1 − ;cos > 1 − 2 8 2 8 2 8 1 1 1 1 9 A+ B+C ⇒ VT > 2  + +  − ( A + B + C ) ≥ 2. − A B C 8 A+ B +C 8 18 π 144 − π 2 = − = >3 3 π 8 8π Bài 5: Cho 2 số không âm tùy ý x,y thõa mãn x+y=1: Tìm Min, Max của: x y S= + y +1 x +1 Giải: Ta có: x y ( x 2 + y 2 ) + ( x + y ) 2 − 2 xy S= + = = . y +1 x +1 xy + ( x + y ) + 1 2 + xy ( x + y)2 1  1 2 − 2t 6 Mà : 0 ≤ xy ≤ = . Coi : t = xy ⇒ t ∈ 0;  và S = = −2 + = f (t ) 4 4  4 2+t t+2  1 2 −6  MinS = f ( ) = ⇒S'= <0⇒ 4 3 (t + 2) 2  MaxS = f (0) = 1  BTVN NGÀY 19-03 Sử dụng các phương pháp khác. Bài 1: Cho 3 số dương x,y,z thõa mãn điều kiện: xyz=1. Chứng minh rằng: Page 6 of 9
  7. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 x2 y2 z2 P= + + ≥1 x+ y+ y z y+z+z x z+x+ x y 3 3 3 Giải: x2 x3 Vì : = 2 x + y + y 3 z x + xy + y 2 x3 − y 3 x3 − y 3 y3 − z3 z 3 − x3 Mà : 2 = x− y⇒ 2 + + =0 x + xy + y 2 x + xy + y 2 y 2 + yz + z 2 z 2 + zx + x 2 x3 y3 z3 y3 z3 x3 ⇔ 2 + + = + + x + xy + y 2 y 2 + yz + z 2 z 2 + zx + x 2 x 2 + xy + y 2 y 2 + yz + z 2 z 2 + zx + x 2 x3 + y 3 y3 + z3 z 3 + x3 ⇔ 2P = 2 + + . x + xy + y 2 y 2 + yz + z 2 z 2 + zx + x 2 x3 + y 3 x 2 − xy + y 2 x 2 − xy + y 2 1 Vì : 2 = ( x + y) 2 . mà : 2 ≥ x + xy + y 2 x + xy + y 2 x + xy + y 2 3 x3 + y 3 x+ y 2 ⇒ 2 ≥ ⇒ 2 P = ( x + y + z ) ≥ 2 3 xyz = 2 ⇒ P ≥ 1. x + xy + y 2 3 3 Bài 2: Cho 3 số thực a,b,c tùy ý. Chứng minh rằng: a−c a −b b−c ≤ + (*) 1+ a . 1+ c 2 2 1+ a . 1+ b 2 2 1+ b . 1+ c 2 2 Giải: Đặt: Page 7 of 9
  8. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 a = tan α  b = tan β ⇒ (*) ⇔ sin(α − β ) + sin( β − γ ) ≥ sin(α − γ ) c = tan γ  Vì : sin(α − γ ) = sin [ (α − β ) + ( β − γ ) ] ) = sin(α − β )cos( β − γ ) + cos(α − β ) sin( β − γ ) ≤ sin(α − β ) cos( β − γ ) + cos(α − β ) sin( β − γ ) ≤ sin(α − β ) + sin( β − γ )  Điều phải chứng minh. Bài 3: Cho 4 số thực a,b,c,d thõa mãn: a2 +b2=1; c – d =3. Chứng minh: 9+6 2 F = ac + bd − cd ≤ 4 Giải: Gọi: A ( a; b ) ⇒ A ∈ (C ) : x 2 + y 2 = 1 và B ( c; d ) ⇒ B ∈ d : x − y = 3 Ta có : AB 2 = (a − c) 2 + (b − d ) 2 = a 2 + b 2 + c 2 + d 2 − 2ac − 2bd = ( a 2 + b 2 ) + (c − d ) 2 − 2(ac + bd − cd ) = 1 + 9 − 2 F Vì AB nhỏ nhất khi và chỉ khi A,B thuộc đường vuông góc với d kẽ từ O. 3 2 3 2 −2 22 − 12 2 ⇒ AB Min = OB − OA = −1 = ⇒ AB 2 ≥ 2 2 4 22 − 12 2 11 − 6 2 9+6 2 ⇒ 10 − 2 F ≥ ⇒ 5− F ≥ ⇒F≤ 4 4 4 Bài 4: Cho: a ≥ c ≥ 0; b ≥ c Chứng minh: c(a − c) + c(b − c) ≤ ab Giải: Page 8 of 9
  9. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 28 tháng 02 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Gọi: r r a ( ) c, b − c ⇒ a = c + b − c = b r r b ( ) a − c, c ⇒ b = a − c + c = a rr r r Do : a.b ≤ a . b ⇔ c(a − c) + c(b − c) ≤ ab Bài 5: Cho x,y,z thuộc khoảng (0;1) thõa mãn điều kiện: xy + yz + zx = 1. Tìm Min của: x y z P= + + 1 − x2 1 − y2 1 − z 2 Giải: Đặt  A  x = tan 2 A B C  tan tan tan  B 2 + 2 + 2 = 1 ( t anA + tan B + tan C )  y = tan ⇒ P = A B C 2  2 1 − tan 2 1 − tan 2 1 − tan 2  C 2 2 2  z = tan  2 Vì :Trong ∆ABC ta có : t anA + tan B + tan C = t anA.tan B.tan C ≥ 3 3 t anA.tan B.tan C 3 3 ⇒ t anA + tan B + tan C = t anA.tan B.tan C ≥ 3 3 ⇒ P ≥ 2 1 Dấu “=” xảy ra khi và chỉ khi A=B=C=600 hay x = y = z = 3 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang Page 9 of 9

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản