Các bài toán trong tam giác 1997-2008

Chia sẻ: Trần Bá Trung4 | Ngày: | Loại File: PDF | Số trang:7

0
138
lượt xem
36
download

Các bài toán trong tam giác 1997-2008

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'các bài toán trong tam giác 1997-2008', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Các bài toán trong tam giác 1997-2008

  1. CÁC BÀI TOÁN TRONG TAM GIÁC Trần Đức Ngọc 0985128747 Trường THPT Tân Kỳ I ,Nghệ An Những bài toán đã thi từ 1997 đến 2008 1)Tam giác ABC có : sin2A+sin2B+sin2 C 2 Thì Tam giác ABC là Tam giác nhọn . Hd : (Đề 2.5-D98,A2000) Biến đổi T = sin2A+sin2B+sin2C = 2 + 2cosAcosBcosC.Biện luận. 2)Tam giác nhọn ,có : + + = + + . C/m ABC đều Hd : (Đề 2.6-A99) Tam giác ABC nhọn nên cosA,cosB,cosC 0.Theo Cosi : + (1) Mà cosAcosB = = cos2 = sin2 Suy ra: cosAsosB cos2 = sin2 . (2) Do đó,từ (1) và (2) ta có : + .Tức là + -Viết hai bđt tương tự, cộng 3 bđt , ta được đpcm : + + + + 3)Tam giác ABC có : sinA+sinB+sinC – 2sin sin = 2sin .C/minh : C = 1200 Hd : (Đề 2.7-A2000) sinA+sinB+sinC – 2sin sin = 2sin 4cos cos cos - 2sin sin = 2cos ….. cos = ….. C = 600 4)Hai góc A,B của tam giác ABC thoả mãn đk: tan + tan = 1. Chứng minh rằng: tan 1 Hd : (Đề 3.11-A98) Chứng minh được tan tan + tan tan + tan tan = 1. Suy ra: tan = = 1 .Mặt khác = Do đó : tan tan .Cho nên: tan = Dấu bằng xẩy ra khi tan = tan = Tức là khi ABC cân tại đỉnh C. 5) C/m Tam giác ABC đều khi và chỉ khi : + + - (cotA+cotB+cotC) = (*) Hd : (Đề 3.12-A99) (*) + + = tan + tan + tan = . Vậy ABC đều ( Với mọi tam giác ta luôn có: tan + tan + tan ….. ( bình phương 2 vế,thay 1 = tan tan + tan tan + tan tan ) …… + 0 ,dấu bằng xẩy ra khi ABC đều ) 6) Tam giác ABC nội tiếp trong đường tròn có bán kính R = 1.Gọi ma , mb , mc là độ dài các trung tuyến.C/m Tam giác ABC đều khi và chỉ khi : + + = Hd : (Đề3.14-A01) Đk cần : ABC đều thì ta có ma = mb = mc = = = sinA . Page 1
  2. CÁC BÀI TOÁN TRONG TAM GIÁC Trần Đức Ngọc 0985128747 Trường THPT Tân Kỳ I ,Nghệ An Suy ra : = = = + + = Điều kiện đủ : 2 2 2ma + = b2 + c2 a2 + b2 + c2 = 2ma + 2 a.ma (1) Hoàn toàn tương tự có: (2) (3) Cộng (1) , (2) , (3) vế theo vế được : + + 2 + + .Dấu bằng xẩy ra ….. (công thức trung tuyến ) a2 = b2 = c2 ABC đều 2 2 2 2 7) C/m rằng :Nếu Tam giác ABC có (b +c )sin(C – B) = (c – b )sin(C + B) Thì tam giác đó vuông hoặc cân Hd : (Đề4.16-A99) (b2+c2)sin(C – B) = (c2 – b2)sin(C + B) b2 = c2 … sin2BsinBsinC = sin2CsinBsinC sin2B = sin2C (ptlg cơ bản) ….. Tam giác ABC vuông hoặc cân. * 8 )Cho tam giác ABC có đường thẳng đi qua trọng tâm G và tâm I đường tròn nội tiếp vuông góc với đường phân giác trong của góc C,gọi a,b,c là độ dài các cạnh của tam giác ABC.Chứng minh rằng : = Hd : (Đề 5.18-A2000). - Gọi giao điểm của IP với các cạnh CA,CB tương ứng là P,Q.Từ giả thiets suy ra CPQ cân tại C -Gọi r,p, ha ,hb , S thứ tự là …của ABC .da , db là khoảng cách từ G đến các cạnh a,b của ABC - Tính diện tích CPQ theo hai cách: Cách 1: dtCPQ = dtCIP + dtCIQ = r (CP + CQ) = r.CP (1) (CP = CQ do CPQ cân) Cách 2 : dtCPQ = dtCGP + dtCGQ = db .CP + da .CQ = (da + db ) .CP (2) (CP = CQ do CPQ cân) Từ (1) , (2) và chú ý G là trọng tâm ABC da = ha db = hb nên ta có : r.CP = (da + db ) .CP r= (da + db ) r= (ha + hb ) = ( + ) = ( + ) = .Đây là đpcm 9)Tam giác ABC có 2b = a +c khi và chỉ khi cot cot = 3 Hd :(Đề 6.21-D98) Định lý sin trong Tam giác.Biến đổi tổng thành tích 10)Tam giác ABC có 5tan tan = 1 .Chứng minh 3c = 2(a+b) Hd :(Đề 6.22-D2000) Đlý sin trong Tam giác.Biến đổi tương đương từ cạnh về góc, bđ tổng thành tích 11)Gọi a,b,c là độ dài ba cạnh ,A,B,C là các góc ,S là diện tích và R là bán kính đường tròn ngoại tiếp tam giác ABC.Chứng minh cotA+cotB+cotC = Hd :(Đề 8.28-A98).Áp dụng các công thức : cosA= , sinA = và S = . cotA = 12)Tam giác ABC thoả mãn hệ thức = . Chứng minh tam giác ABC đều Hd :(Đề 8.29-A99) Định lý sin trong tam giác. -Đẳng thức đã cho tương đương với sin2A + sin2B + sin2C = sinA + sinB + sinC (*) -Nhân 2 cả hai vế ,(*) (sin2A + sin2B-2sinC)+( sin2B + sin2C-2sinA)+( sin2C + sin2A-2sinB)=0 Page 2
  3. CÁC BÀI TOÁN TRONG TAM GIÁC Trần Đức Ngọc 0985128747 Trường THPT Tân Kỳ I ,Nghệ An 2sinC + 2sinB + 2sinA =0 A=B= C ABC đều 13)Tam giác ABC thoả mãn hệ thức : + = .(*) Chứng minh ABC vuông. Hd :(Đề 10.34-A97) Đlý sin .(*) = cos(A+B) = 0 ABC vuông 14) Trong tam giác ABC ,chứng minh luôn có cosA+cosB+cosC 1 (*) Hd :(Đề 10.35-B97) .Ta có (*) 2 + 4sin sin sin 0 15) Trong tam giác ABC ,chứng minh : a2+b2+c2 2(ab+bc+ca) Hd :(Đề 10.36-D97) Ta có : a b2 + c2 – a2 2bc 2 2 2 b c +a –b 2ca c a2 + b2 – c2 2ab Cộng ba bđt cùng chiều , được đpcm : ABC bất kỳ ta luôn có : a2+b2+c2 2(ab+bc+ca) 16) Chứng minh :Tam giác vuông hoặc cân khi và chỉ khi : acosB – bcosA = asinA – bsinB Hd :(Đề 10.37-A98) .Định lý sin 17) Chứng minh :Tam giác ABC có tanA + tanB = 2cot thì ABC là tam giác cân Hd :(Đề 10.38-B98) 18) Tính các góc của tam giác ABC nếu các góc A,B,C thoả mãn hệ thức : cos2A + (cos2B +cos2C) + = 0 (*) Hd :(Đề 12.47-A01) (*) + 3.sin2(B-C) = 0 ….. ABC đều 19) Tam giác ABC thoả mãn atanA + btanB = (a+b).tan .(*) Chứng minh ABC cân Hd :(Đề 13.54-D01) . (*) .(tan A –tanB) = 0 ….. A = B , ABC cân tại C. 20) Tam giác ABC thoả mãn hệ thức : cot2 + cot2 + cot2 = 9. Chứng minh tam giác ABC đều Hd :(Đề 14.57-A99) Ta có 1= tan tan + tan tan + tan tan 3 cot2 cot2 cot2 27 (1) . Theo Cosi : cot2 + cot2 + cot2 3. (2) Từ (1) và (2) suy ra : cot2 + cot2 + cot2 3. = 9 .Dấu bằng xẩy ra khi ở (1) và (2) đồng thời xẩy ra dấu bằng, tức là khi: ….. ABC đều 21) Tam giác ABC là tam giác gì nếu : Hd :(Đề 15.58-A97) Page 3
  4. CÁC BÀI TOÁN TRONG TAM GIÁC Trần Đức Ngọc 0985128747 Trường THPT Tân Kỳ I ,Nghệ An -Đẳng thức (1) - 4cos cos cos =0 có góc (chẳng hạn A) bằng 600 -Đẳng thức (2) … cos (A - B) = 1 … A = B .Như vậy ,suy ra ABC đều 0 22) Cho tam giác ABC có các góc thoả mãn C B A 90 . Tìm gtnn của biểu thức : M = cos sin .sin Hd :(Đề 15.61-A99) Ta biến đổi M = .Ta c/minh M -Có : sinCcoss(A-B) = sin(A+B)cos(A-B) = = sinAcossA + sinBcossB -Suy ra : cos(A-B) = cosA + cosB cosA + cosB.Tức là cos(A-B) cosA + cosB M ( Vì theo giả thiết C B A 900 1 ) Thấy :với ABC đều thì điều kiện C B A 900 được thực hiện và M = - Đẳng thức M = xẩy ra -Suy ra : M= khi ABC là tam giác vuông tại A hoặc là tam giác đều.Vậy MinM = 23) Tam giác ABC là tam giác gì nếu : Hd :(Đề 15.62-A01) -Áp dụng Đlý sin cho (1),chia cả 2 vế cho 2sinAsinB 0 được (1) sinAcossB+sinBcosA = 2sinBcosA sin(B-A) = 0 A = B . Thay vào (2) được 2sin2A = 4sin2 A cosA = sinA A= - Như vậy A = B = do đó C = , ABC vuông cân tại đỉnh C. 24) Gọi a,b,c là độ dài ba cạnh ,r là bán kính đường tròn nội tiếp tam giác ABC . Chứng minh : + + Hd :(Đề 16.64-A98) Ta có : + + + + = + + = = = = .Dấu bằng xẩy ra ABC đều 25) Cho A,B,C là ba góc trong một tam giác . Tìm gtln của biểu thức : M = 3cosA + 2(cosB + cosC) Hd :(Đề 17.67-A98) Ta có M = 3(1- 2sin2 ) + 4sin cos f (t) = 6t2- 4t.cos + (M – 3) = 0 với t = sin Phương trình f (t) = 0 có ’ = 4cos2 – 6(M-3) 0 M-3 cos2 M +3= M= cos2 = 1 và ’ = 0 B = C và A là góc có sin = . Vậy MaxM = . Page 4
  5. CÁC BÀI TOÁN TRONG TAM GIÁC Trần Đức Ngọc 0985128747 Trường THPT Tân Kỳ I ,Nghệ An 26) Cho A,B,C là ba góc của tam giác . Chứng minh rằng : Nếu cot , cot , cot lập thành một cấp số cộng thì cot . cot =3 Hd :(Đề 17.68-A99) - Trước hết chứng minh : Với tam giác ABC ta luôn có : cot + cot + cot = cot cot cot (1) - Theo giả thiết ; cot , cot , cot lập thành một cấp số cộng .Ta có cot + cot = 2cot ( Cộng cot vào cả hai vế ) cot + cot + cot = 3cot (2) - Từ (1),(2) suy ra : cot cot cot = 3cot cot . cot = 3 Đây là đpcm. 27) Cho A,B,C là ba góc trong một tam giác . Tìm gtnn của biểu thức : M= + + Hd :(Đề 19.71-A99) Áp dụng Cosi : M= + + = = M= A = B = 300 , C = 1200 .Vậy MinM = đạt khi A = B = 300 , C = 1200, ABC cân 28) Cho tam giác ABC có 00 A B C 900 .Chứng minh : 2 Hd :(Đề 19.72-A2000) - Từ gt suy ra cosC 0.Từ đk 00 A B C 900 600 C 900.Đặt t = cosC , 0 t . Do đó đpcm (2t – 1) 0 (*) Vì 2t 0 và 2t – 1 0 cho nên bđt (*) xẩy ra dấu bằng khi và chỉ khi 2t – 1 = 0 t= C = 600 ABC đều. 29) Tam giác ABC có các cạnh a,b,c và p là nửa chu vi . Chứng minh rằng : + + 2( + + ) Hd :(Đề 21.77-A01).Áp dụng bđt Cosi ta có : + 2. = = Tức là : + (1) Tương tự: : + (2) và : + (3). Cộng ba bất đẳng thức cùng chiều (1),(2),(3) ta có đpcm. 30) Tam giác ABC có .Chứng minh ABC đều Hd :(Đề 22.79-D97) -Giả thiết : (Nhân chéo,làm gọn) a2(b+c) = b3+c3 a2 = b2 + c2 – bc A = 600 (1) - Giả thiết: cos(B – C) – cosA= cos(B – C) = 1 B - C = 0, B=C, ABC (2) -Từ (1) và (2) ta được đpcm : ABC đều Page 5
  6. CÁC BÀI TOÁN TRONG TAM GIÁC Trần Đức Ngọc 0985128747 Trường THPT Tân Kỳ I ,Nghệ An 31) Cho a,b,c là ba cạnh và A,B,C là ba góc của một tam giác . Chứng minh rằng : = (*) Hd :(Đề 22.80-D98).Ta có:VP = = = =…= = VT 32) Các cạnh và các góc của tam giác thoả mãn : + = . Chứng minh ABC vuông Hd :(Đề 22.82-D2000) Đlý sin.Giả thiết biến đổi tương đương cos(B+C) = 0 … ABC vuông 33) Chứng minh rằng: Trong mọi tam giác ta có : 0 sinA+sinB+sinC - sinAsinB - sinBsinC - sinCsinA 1 Hd :(Đề 23.84-D97) Có: sinA+sinB+sinC - sinAsinB - sinBsinC – sinCsinA= sinA(1- sinB)+sinB(1-sinC)+sinC(1-sinA) 0 (1) Và : (1-sinA)(1-sinB)(1-sinc) 0 ,( thực hiện nhân đa thức ) sinA+sinB+sinC - sinAsinB - sinBsinC – sinCsinA 1 – sinAsinBsinC 1 (2) Từ (1) và (2) ta được điều cần chứng minh: 0 sinA+sinB+sinC - sinAsinB - sinBsinC - sinCsinA 1 34 ) Tam giác ABC có các góc Avà B nhọn , các góc thoả mãn sin2 A + sin2B = * . Tính góc C Hd :(Đề 23.84-D97). -Ta có 0 sinC 1 nên sin2C do đó từ gt sin2A + sin2B sin2C a2 + b2 c2 (áp dụng Đlý cosin) suy ra cosC 0 (1) -Chứng minh được : sin2A + sin2 B + sin2C = 2 + 2cossAcosBcosC . -Từ giả thiết suy ra: + sin2C = 2 + 2cossAcosBcosC .Có VT = + sin2C 2 cossAcosBcosC 0 .Theo giả thiết A , B nhọn cossAcosB 0 do đó cosC 0 (2) -Từ (1) và (2) ta có cosC = 0 .Vậy C = 900. 35) Chứng minh :Trong mọi tam giác ta luôn có : + + = (tan + tan + tan + cot + cot + cot ) Hd :(Đề 23.85-A98) Ta có tan + cot = , tan + cot = , tan + cot = Cộng 3 đẳng thức đó vế theo vế , sau đó chia hai vế cho 2 được đpcm. 36) Các góc của tam giác ABC thoả mãn :cotA +cotB +cotC = tan + tan + tan . Chứng minh ABC đều Hd :(Đề 23.86-A99) :Chứng minh được ABC bất kỳ thì: cotA +cotB +cotC tan + tan + tan Dấu bằng xẩy ra khi ABC là tam giác đều.Thật vậy,ta có: cotA+cotB = … = = 2tan .Tức là : cotA+cotB 2tan (1) Hoàn toàn tương tự ,có: cotB+cotC 2tan (2) , cotC+cotA 2tan (3) .Cộng 3 bđt (1), (2), (3) được Đpcm : cotA +cotB +cotC tan + tan + tan .Dấu bằng xẩy ra khi ở các bđt (1), (2), (3) đồng thời xẩy ra dấu bằng ,tức là khi A = B = C , ABC là tam giác đều . 37) Các góc của tam giác ABC thoả mãn : cos cos cos - sin sin sin = (*) Chứng minh ABC vuông. Hd :(Đề 23.88-A01) Ta có (*) cos - sin =1 Page 6
  7. CÁC BÀI TOÁN TRONG TAM GIÁC Trần Đức Ngọc 0985128747 Trường THPT Tân Kỳ I ,Nghệ An 2 cos sin + cos cos - sin cos + sin -1=0 cos - =0 =0 .T/hợp (1) xẩy ra thì A = 900 ,T/hợp (2) thì B hoặc C là 900 Ta được đpcm :Nếu Các góc của tam giác ABC thoả mãn : cos cos cos - sin sin sin = (*) thì ABC vuông. 38*) Chứng minh trong mọi tam giác ta luôn có : tan + tan + tan = Hd :(Đề 24.89-A01) Ta có: VT = tan + tan + tan = =… …..= = = VP 39) Cho A,B,C là ba góc của tam giác .Chứng minh: a) tan tan + tan tan + tan tan = 1 b) tan tan tan , Dấu đẳng thức xẩy ra khi nào ? Hd :(Đề 25.92-A99) Câu a).Có = tan = .Tức là: = Nhân chéo ,suy ra đpcm: tan tan + tan tan + tan tan = 1 Câu b) Côsi : ) 1 = tan tan + tan tan + tan tan 3 . Suy ra : tan tan tan (đpcm) Dấu bằng xẩy ra khi ABC đều. ( Ra bài tập mới- Thấy : tan tan tan tương đương với : cot cot cot ) 40) Các góc của tam giác ABC thoả mãn : cosC(sinA + sinB) = sinCcos(A – B) (*) Hãy tính : cosA + cosB Hd :(Đề 25.93-A2000) Ta có (*) - cos(A+B).2sin cos = 2sin cos cos(A-B) - cos(A+B).cos = cos cos(A-B) (1- 2cos2 ) .cos = cos (2cos2 - 1) Đặt u = cos và v = cos (u và v dương) Ta có (1-2u2)v = (2v2- 1)u ….. 1= 2uv . Tức là 1 = 2 cos cos cosA + cosB = 1 (Điều ta cần tìm) ****************************************************************************************** Trên đây là 40 bài toán về Tam giác ,đã thi trong 13 năm qua .Tôi đã sưu tập,ghi lại những Hướng dẫn rất ngắn gọn. Góp phần giúp cho các em Học sinh có điều kiện ôn tập mảng kiến thức này được thuận lợi. Tôi gửi lên thân tặng các đồng nghiệp có cùng sở thích ĐAM MÊ CHUYÊN MÔN . TRẦN ĐỨC NGỌC_YÊN SƠN_ĐÔ LƯƠNG _NGHỆ AN ĐIỆN THOẠI 0985128747 _ 0383882577 GV_ THPT TÂN KỲ I >>>>>>>>>>

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản