Các dạng bài tập lượng giác

Chia sẻ: Huynh Huu Tai | Ngày: | Loại File: DOC | Số trang:5

6
1.326
lượt xem
420
download

Các dạng bài tập lượng giác

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo chuyên đề toán học Các dạng bài tập lượng giác

Chủ đề:
Lưu

Nội dung Text: Các dạng bài tập lượng giác

  1. THPT_TL ........ Các dạng bài tập lượng giác A/KIẾN THỨC CẦN NHỚ VÀ PHÂN LOẠI BÀI TOÁN DẠNG 1 Phương trình bậc nhất và bậc hai , bậc cao với 1 hàm số lượng giác Đặt HSLG theo t với sinx , cosx có điều kiện t ≤ 1 Giải phương trình ……….theo t Nhận t thoả mãn điều kiện giải Pt lượng giác cơ bản Giải phương trình: 2cos2x- 4cosx=1 1/  2/ 4sin3x+3 2 sin2x=8sinx  sinx ≥ 0 1-5sinx+2cosx=0 3/ 4cosx.cos2x +1=0 4/   cos x ≥ 0 5/ Cho 3sin x-3cos x+4sinx-cos2x+2=0 (1) và cos2x+3cosx(sin2x-8sinx)=0 (2). 3 2 1 Tìm n0 của (1) đồng thời là n0 của (2) ( nghiệm chung sinx= ) 3 3 4 6/ sin3x+2cos2x-2=0 7/ a/ tanx+ -2 = 0 b/ +tanx=7 cot x cos 2 x c* / sin6x+cos4x=cos2x 5π 7π 8/sin( 2 x + )-3cos( x − )=1+2sinx 9/ sin 2 x − 2sin x + 2 = 2sin x − 1 2 2 sin 2 2 x + 4 cos 4 2 x − 1 10/ cos2x+5sinx+2=0 11/ tanx+cotx=4 12/ =0 2sin x cos x 13/ sin x + 1 + cos x = 0 14/ cos2x+3cosx+2=0 4sin 2 x + 6sin x − 9 − 3cos 2 x 2 4 15/ =0 16/ 2cosx- sin x =1 cos x DẠNG 2: Phương trình bậc nhất đối với sinx và cosx : asinx+bcosx=c Cách 1: asinx+bcosx=c  b  a b Cách : 2 a sin x + cos x  = c Đặt cosx= 2 ; sinx=  a  a +b 2 a +b 2 2 b Đặt = tan α ⇒ a [ sin x + cos x.tan α ] = c ⇒ a 2 + b 2 sin( x + α ) = c a c ⇔ sin( x + α ) = cos α a x 2t 1− t 2 Cách 3: Đặt t = tan ta có sin x = ;cos x = ⇒ (b + c)t 2 − 2at − b + c = 0 2 1+ t 2 1+ t 2 Đăc biệt : π π 1. sin x + 3 cos x = 2sin( x + ) = 2 cos( x − ) 3 6 π π 2. sin x ± cos x = 2 sin( x ± ) = 2 cos( x m ) 4 4 π π 3. sin x − 3 cos x = 2sin( x − ) = −2 cos( x + ) 3 6 Điều kiện Pt có nghiệm : a +b ≥ c 2 2 2 GIẢI PHƯƠNG TRÌNH : 1/ 2sin15x+ 3 cos5x+sin5x=k với k=0 và k=4 với k=0 1 6 2/ a : 3 sin x + cos x = b: 4sin x + 3cos x + =6 cos x 4sin x + 3cos x + 1 1 c: 3 sin x + cos x = 3 + 3 sin x + cos x + 1 Chuyªn ®Ò ph¬ng trinh lîng gi¸c 1
  2. THPT_TL ........ 2π 6π 3/ cos 7 x − 3 sin 7 x + 2 = 0 *tìm nghiệm x ∈ ( ; ) 5 7 1 + cos x + cos 2 x + cos 3x 2 4/( cos2x- 3 sin2x)- 3 sinx-cosx+4=0 5/ = (3 − 3 sin x) 2 cos 2 x + cos x − 1 3 cos x − 2sin x.cos x 6/ = 3 2 cos 2 x + sin x − 1 DẠNG 3 Phương trình đẳng cấp đối với sin x và cosx Đẳng cấp bậc 2: asin2x+bsinx.cosx+c cos2x=0 Cách 1: Thử với cosx=0 Với cosx ≠ 0 .Chia 2 vế cho cos2x ta được: atan2x+btanx +c=d(tan2x+1) Cách2: áp dụng công thức hạ bậc Đẳng cấp bậc 3: asin3x+b.cos3x+c(sinx+ cosx)=0 hoặc asin3x+b.cos3x+csin2xcosx+dsinxcos2x=0 Xét cos3x=0 và cosx ≠ 0 Chia 2 vế cho cos2x ta được Pt bậc 3 đối với tanx GIẢI PHƯƠNG TRÌNH 1/a/ 3sin2x- 3 sinxcosx+2cos2x cosx=2 b/ 4 sin2x+3 3 sinxcosx-2cos2x=4 c/3 sin2x+5 cos2x-2cos2x-4sin2x=0 d/ 2 sin2x+6sinxcosx+2(1+ 3 )cos2x-5- 3 =0 2/ sinx- 4sin3x+cosx=0 2 cách +/ (tanx -1)(3tan2x+2tanx+1)=0 π x = + kπ 4 + sin3x- sinx+ cosx- sinx=0 ⇔ (cosx- sinx)(2sinxcosx+2sin2x+1)=0 3/ tanx sin2x-2sin2x=3(cos2x+sinxcosx) 4/ 3cos4x-4sin2xcos2x+sin4x=0 5/ 4cos3x+2sin3x-3sinx=0 6/ 2 cos3x= sin3x 7/ cos3x- sin3x= cosx+ sinx 3 8/ sinx sin2x+ sin3x=6 cos x 9/sin3(x- π /4)= 2 sinx DANG 4 Phương trình vế trái đối xứng đối với sinx và cosx * a(sin x+cosx)+bsinxcosx=c đặt t= sin x+cosx t ≤ 2 t 2 −1 ⇒ at + b =c ⇔ bt2+2at-2c-b=0 2 * a(sin x- cosx)+bsinxcosx=c đặt t= sin x- cosx t ≤ 2 1− t2 ⇒ at + b =c ⇔ bt2 -2at+2c-b=0 2 GIẢI PHƯƠNG TRÌNH 1 1 1 1/ a/1+tanx=2sinx + b/ sin x+cosx= - cos x tan x cot x 3 3 2/ sin x+cos x=2sinxcosx+sin x+cosx 3/ 1- sin3x+cos3x= sin2x 4/ 2sinx+cotx=2 sin2x+1 5/ 2 sin2x(sin x+cosx)=2 6/ (1+sin x)(1+cosx)=2 7/ 2 (sin x+cosx)=tanx+cotx 3 8/1+sin3 2x+cos32 x= sin 4x 9/* a* 3(cotx-cosx)-5(tanx-sin x)=2 2 9/b*: cos4x+sin4x-2(1-sin2xcos2x) sinxcosx-(sinx+cosx)=0 1 1 10 10/ sin x − cos x + 4sin 2 x = 1 11/ cosx+ +sinx+ = cos x sin x 3 12/ sinxcosx+ sin x + cos x =1 Chuyªn ®Ò ph¬ng trinh lîng gi¸c 2
  3. THPT_TL ........ DANG 5 Giải phương trình bằng phương pháp hạ bậc Công thức hạ bậc 2 Công thức hạ bậc 3 1 + cos 2 x 1 − cos 2 x 3cos x + cos 3x 3sin x − sin 3 x cos2x= ; sin2x= cos3x= ; sin3x= 2 2 4 4 GIẢI PHƯƠNG TRÌNH 1/ sin2 x+sin23x=cos22x+cos24x 2/ cos2x+cos22x+cos23x+cos24x=3/2 3/sin2x+ sin23x-3 cos22x=0 π 5x 9x 4/ cos3x+ sin7x=2sin2( + )-2cos2 4 2 2 5/ sin24 x+ sin23x= cos22x+ cos2x với x ∈ (0; π ) π 6/sin24x-cos26x=sin( 10,5π + 10x ) với x ∈ (0; ) 7/ cos4x-5sin4x=1 2 8/4sin3x-1=3- 3 cos3x 9/ sin22x+ sin24x= sin26x 10/ sin2x= cos22x+ cos23x 11/ (sin22x+cos42x-1): sin x cos x =0 π kπ π kπ  12/ 4sin3xcos3x+4cos3x sin3x+3 3 cos4x=3 x =  24 + 2 ; 8 +   2  13/ 2cos22x+ cos2x=4 sin22xcos2x π x 14/ cos4xsinx- sin22x=4sin2( − )-7/2 với x − 1
  4. THPT_TL ........ 1 5 9/ 2cos2x-8cosx+7= 10/ cos8x+sin8x=2(cos10x+sin10x)+ cos2x cos x 4 11/ 1+ sinx+ cos3x= cosx+ sin2x+ cos2x 12/ 1+sinx+cosx+sin2x+cos2x=0 13/ sin2 x(tanx+1)=3sinx(cosx-sinx)+3 1 1 14/ 2sin3x- =2cos3x+ 15/cos3x+cos2x+2sinx-2=0 sin x cos x 1 16/cos2x-2cos3x+sinx=0 17/ tanx–sin2x-cos2x+2(2cosx- )=0 cos x 1 − cos 2 x 18/sin2x=1+ 2 cosx+cos2x 19/1+cot2x= sin 2 2 x 1 20/ 2tanx+cot2x=2sin2x+ 21/cosx(cos4x+2)+ cos2x-cos3x=0 sin 2x 22/ 1+tanx=sinx+cosx 23/ (1-tanx)(1+sin2x)=1+tanx π 1 1 2 24/ 2 2 sin( x + )= + 25/ 2tanx+cotx= 3 + 4 sin x cos x sin 2x 26/ cotx-tanx=cosx+sinx 27/ 9sinx+6cosx-3sin2x+cos2x=8 DANG 8 : Phương trình LG phải thực hiện công thúc nhân đôi, hạ bậc cos2x= cos2x- sin2x =2cos2x-1=1-2sin2x 2t 1− t2 2t sin2x=2sinxcosx sinx = ; cosx= tanx= 1+ t2 1+ t2 1− t2 2 tan x tan2x= 1 − tan 2 x GIẢI PHƯƠNG TRÌNH 1 1/ sin3xcosx= + cos3xsinx 2/ cosxcos2xcos4xcos8x=1/16 4 3/tanx+2cot2x=sin2x 4/sin2x(cotx+tan2x)=4cos2x 5/ sin4x=tanx 6/ sin2x+2tanx=3 7/ sin2x+cos2x+tanx=2 8/tanx+2cot2x=sin2x 9/ cotx=tanx+2cot2x 3 10/a* tan2x+sin2x= cotx b* (1+sinx)2= cosx 2 DANG 9 : Phương trình LG phải thực hiện phép biến đổi tổng_tích và tích_tổng GIẢI PHƯƠNG TRÌNH 1/ sin8x+ cos4x=1+2sin2xcos6x 2/cosx+cos2x+cos3x+cos4x=0 sin 3 x − sin x 3/ = sin 2 x + cos 2 x tìm x ∈ ( 0; 2π ) 4/ sinx+sin2x+sin3x+sin4x=0 1 − cos 2 x 3 ( cos 2 x + cot 2 x ) π  π  5/ sin5x+ sinx+2sin2x=1 6/ = 4sin  + x ÷cos  − x ÷ cot 2 x − cos 2 x 4  4  7/ tanx+ tan2x= tan3x 8/ 3cosx+cos2x- cos3x+1=2sinxsin2x DANG 10 : Phương trình LG phải đặt ẩn phụ góc A hoặc đặt hàm B GIẢI PHƯƠNG TRÌNH 3π x 1 π 3 x x =  3π + k 2π ; 4π + k 2π ; 14π + k 2π  π π π π 1/ sin( − )= sin( + ) 5 15 15  2/ sin( 3 x −  )=sin2x sin( x + ) x = 4 + k 2 10 2 2 10 2 4 4 3π x 3/(cos4x/3 – cos2x): 1 − tan 2 x =0 x = k 3π 4/ cosx-2sin( − )=3 x = k 4π 2 2 7π  π kπ  )=sin(4x+3 π ) x = ± 6 + kπ ; 2   π π  5/ cos( 2 x −   6/3cot2x+2 2 sin2x=(2+3 2 )cosx x = ± 3 + k 2π ; ± 4 + k 2π    2 2 π 1 1 7/2cot2x+ +5tanx+5cotx+4=0 x=− + kπ 8/ cos2x+ 2 =cosx+ x = kπ 4 cos 2 x cos x cos x 1 1 π π 7π  1 + sin 2 x 1 + tan x x = { kπ ; α + kπ } , tan α = 2 9/sinx- cos2x+ +2 2 =5 x =  2 + k 2π ; − 6 + k 2π ; 6 + k 2π  11/ +2 =3 sin x sin x   1 − sin 2 x 1 − tan x DANG 11 : Phương trình LG phải thực hiện các phép biến đổi phức tạp GIẢI PHƯƠNG TRÌNH Chuyªn ®Ò ph¬ng trinh lîng gi¸c 4
  5. THPT_TL ........ 1/ 3 + 4 6 − (16 3 − 8 2) cos x = 4cos x − 3 x=± π 4 + k 2π π 2/cos  4 (   ) 3 x − 9 x 2 − 16 x − 80  =1 tìm n0 x ∈ Z x = { −21; −3} π π 3/ 5cos x − cos 2 x +2sinx=0 x = − 6 + k 2π 4/3cotx- tanx(3-8cos2x)=0 x=± 3 + kπ 2 ( sin x + tan x ) 2π π 5/ − 2 cos x = 2 x = ± 3 + k 2π 6/sin3x+cos3x+ sin3xcotx+cos3xtanx= 2sin 2x x= 4 + k 2π tan x − sin x kπ π k  7/tan2xtan23 xtan24x= tan2x-tan23 x+tan4x x= 4 8/tanx+tan2x=-sin3xcos2x x =  3 π + k 2π    5 −1 9/sin3x=cosxcos2x(tan2x+tan2x) x = kπ 10/ sin x + sin x = 1 − sin 2 x − cos x x = kπ ;sin x = 2 π 11/cos2   4 (   )   π 4  sin x + 2 cos 2 x  -1=tan2  x + tan 2 x ÷  π x = − + k 2π 4 x π  x π   x 2π   3x π   5π 5π 5π  12/ 2 cos  − ÷− 6 sin  − ÷ = 2sin  − ÷− 2 sin  + ÷ x = − 12 + k 5π ; − 3 + k 5π ; 4 + k 5π     5 12   5 12  5 3   5 6 DANG 12 : Phương trình LG không mẫu mực, đánh giá 2 vế ,tổng 2 lượng không âm,vẽ 2 đồ thị bằng đạo hàm GIẢI PHƯƠNG TRÌNH π 1/ cos3x+ 2 − cos 2 3x =2(1+sin22x) x = kπ 2/ 2cosx+ 2 sin10x=3 2 +2sinxcos28x x= 4 + kπ 3/ cos24x+cos26x=sin212x+sin216x+2 với x ∈ ( 0; π )  2π  4/ 8cos4xcos22x+ 1 − cos 3x +1=0 x = ±  3 + k 2π   x2 6/ 5-4sin2x-8cos2x/2 =3k tìm k ∈ Z* để hệ có nghiệm sin x 5/ π = cos x x= 0 7/ 1- =cosx 2 8/( cos2x-cos4x)2=6+2sin3x x= π 2 + kπ 9/ ( 1 2 ) 1 − cos x + 1 + cos x cos 2 x = sin 4 x x=± π 4 + k 2π Chuyªn ®Ò ph¬ng trinh lîng gi¸c 5
Đồng bộ tài khoản