Các phương pháp giải bài toán qui hoạch tuyến tính

Chia sẻ: Gray Swan | Ngày: | Loại File: PDF | Số trang:66

1
2.000
lượt xem
346
download

Các phương pháp giải bài toán qui hoạch tuyến tính

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Trong các phương pháp giải bài toán qui hoạch tuyến tính, phương pháp đồ thị (Phương pháp hình học) thường được sử dụng. Phương pháp này có ưu điểm là trực quan, dễ hiểu. Tuy nhiên, phương pháp này chỉ dùng để giải những bài toán hai biến quyết định. Về cơ bản phương pháp này gồm hai bước sau: Xác định miền phương án chấp nhận được; Từ đó tìm phương án tối ưu trên miền chất nhận đó. a. Xác định miền chấp nhận bằng đồ...

Chủ đề:
Lưu

Nội dung Text: Các phương pháp giải bài toán qui hoạch tuyến tính

  1. 2.3. Những phương pháp giải bài toán QHTT 50 2.3.1. Phương pháp đồ thị a. Xác định miền chấp nhận được b. Tìm giá trị của hàm mục tiêu trên miền chấp nhận 2.3.2. Phương pháp đơn hình a. Thuật toán đơn hình giải bài toán dạng chuẩn b. Thuật toán đơn hình giải bài toán mở rộng c. Giải bằng máy tính
  2. 2.3.1. Phương pháp đồ thị 51 Trong các phương pháp giải bài toán qui hoạch tuyến tính, phương pháp đồ thị (Phương pháp hình học) thường được sử dụng. Phương pháp này có ưu điểm là trực quan, dễ hiểu. Tuy nhiên, phương pháp này chỉ dùng để giải những bài toán hai biến quyết định. Về cơ bản phương pháp này gồm hai bước sau: Xác định miền phương án chấp nhận được; Từ đó tìm phương án tối ưu trên miền chất nhận đó.
  3. a. Xác định miền chấp nhận bằng đồ thị 52 Mỗi trục thể hiện một biến quyết định; Mỗi ràng buộc vẽ một đường thẳng để xác định miền chấp nhận: Mỗi đường thẳng chỉ cần vẽ 2 điểm và nối chúng với nhau; Chọn một điểm bất kỳ thoả mãn ràng buộc, miền chứa điểm đó sẽ là miền chấp nhận thỏa mãn ràng buộc đang xét; Giao tất cả các miền chấp nhận của các ràng buộc hình thành vùng chấp nhận của bài toán. Bất cứ điểm nào nằm trên đường biên của vùng chấp nhận hoặc trong vùng chấp nhận được gọi là điểm phương án chấp nhận được đối với bài toán qui hoạch.
  4. a. Tiếp 53 70 Nguyên liệu 3 Số tấn chất bazơ hoà tan 60 50 40 30 Nguyên liệu 2 20 Vùng chấp nhận Nguyên liệu 1 10 0 0 10 20 30 40 50 Số tấn chất phụ gia
  5. b. Tìm giá trị của hàm mục tiêu trên miền chấp nhận 54 70 Số tấn chất bazơ hoà tan Phương án tối ưu 60 F=25, B=20 50 40 30 20 10 0 0 10 20 30 40 50 Số tấn chất phụ gia
  6. Tóm tắt về phương pháp đồ thị 55 Vẽ đồ thị các ràng buộc: Mỗi ràng buộc vẽ một đường thẳng và xác định miền chấp nhận được của mỗi ràng buộc; Xác định vùng chấp nhận được: Giao của các miền chấp nhận của tất cả những ràng buộc của bài toán; Vẽ đường mục tiêu Cho hàm mục tiêu bằng một giá trị bất kỳ và vẽ đường mục tiêu. Đối với bài toán cực đại, tịnh tiến đường mục tiêu trong vùng chấp nhận theo hướng làm giá trị của hàm mục tiêu lớn hơn cho đến khi giá trị của hàm mục tiêu lớn nhất (đối với bài toán cực tiểu thì ngược lại); Bất kỳ phương án trên đường mục tiêu với giá trị lớn nhất (đối với bài toán cực đại) là phương án tối ưu.
  7. 2.3.2. Phương pháp đơn hình 56 Cơ sở toán học của phương pháp a. Thuật toán đơn hình giải bài toán dạng chuẩn b. Thuật toán đơn hình giải bài toán mở rộng c. Giải bằng máy tính d.
  8. Cơ sở toán của phương pháp 57 Tính chất 1: Nếu bài toán có phương án tối ưu thì cũng có phương án cơ bản tối ưu. Tính chất 2: Số phương án cơ bản là hữu hạn. Tính chất 3: Điều kiện cần và đủ để bài toán có phương án tối ưu là hàm mục tiêu của nó bị chặn dưới khi f(x)→min và bị chặn trên khi f(x)→max trên tập phương án.
  9. Thuật toán bài toán Min 58 Bước 1: Chuyển bài toán về dạng chuẩn Bước 2: Lập bảng đơn hình đầu tiên Biến x1 x2 … xr … xm xm+1 … xv … xn Tỷ số cơ H ệ P.án λi bản số c1 c2 ... cr cm cm+1 cv ... cn x1 c1 1 0 ... 0 ... 0 a1(m+1) ... a1v ... a1n b1 x2 c2 0 1 ... 0 ... 0 a2(m+1) ... a2v ... a2n b2 … … ... ... ... ... ... ... ... ... ... ... ... ... xr cr 0 0 ... 1 ... 0 ar(m+1) ... arv ... arn br … ... ... ... ... ... ... ... ... ... ... ... ... ... xm cm 0 0 ... 0 ... 1 am(m+1) ... amv ... amn bm Δm+1 Δv Δn 0 0 ... 0 ... 0 ... ... f0 m m f 0 = ∑ ci b i & Δ j = ∑ ci a ij − c j i =1 i =1
  10. Thuật toán bài toán Min 59 Bước 3: Kiểm tra tính tối ưu Nếu Δj ≤0 ∀j phương án đang xét là tối ưu và giá trị hàm mục tiêu là f(x)=f0. Nếu ∃Δj > 0 mà aij ≤0 ∀i không có phương án tối ưu. Nếu cả 2 trường hợp trên không xảy ra thì chuyển sang bước 3. Bước 4: Tìm biến đưa vào Nếu Δv=max(Δj) thì xv được đưa vào, cột v là cột chủ yếu. Bước 5: Tìm biến đưa ra Tính λi = bi/aiv ứng với các aiv > 0 Nếu λr=minλi thì xr là biến đưa ra. Hàng r là hàng chủ yếu, phần tử arv là phần tử trục xoay.
  11. Thuật toán bài toán Min 60 Bước 6: Biến đổi bảng như sau : Thay xr bằng xv và cr bằng cv. Các biến cơ bản khác và hệ số tương ứng để nguyên. Chia hàng chủ yếu (hàng r) cho phần tử trục xoay arv, chúng ta được hàng r mới gọi là hàng chuẩn. Muốn có hàng i mới (i≠r), lấy –aiv nhân với hàng chuẩn rồi cộng vào hàng i cũ. Muốn có hàng cuối mới, lấy -Δv nhân với hàng chuẩn rồi cộng vào hàng cuối cũ. Hàng cuối (gồm f và Δj) cũng có thể tính trực tiếp như ở bước 1 với bảng mới vừa được tạo. Quay lại bước 2
  12. Ví dụ 61 Hàm mục tiêu Min(6x1+x2+x3+3x4+x5-7x6) Ràng buộc -x1+x2 - x4 + x6 = 15 -2x1 + x3 - 2x6 = 9 4x1 + 2x4 + x5-3x6 = 2 Ràng buộc dấu xj ≥0 (mọi j)
  13. Giải 62 Bài toán này có dạng chuẩn, vậy có thể lập bảng như sau : Biến x1 x2 x3 x4 x5 x6 Hệ λi cơ P.án số 6 1 1 3 1 -7 bản x2 1 -1 1 0 -1 0 1 15 15 x3 1 -2 0 1 0 0 -2 9 x5 1 4 0 0 2 1 -3 2 -5 0 0 -2 0 3 26
  14. Lời giải 63 Bảng 2 Biến x1 x2 x3 x4 x5 x6 Hệ λi cơ P.án số 6 1 1 3 1 -7 bản x6 -7 -1 1 0 -1 0 1 15 x3 1 -4 2 1 -2 0 0 39 x5 1 1 3 0 -1 1 0 47 -2 -3 0 1 0 0 -19 Không có phương án tối ưu
  15. Thuật toán bài toán Max 64 So với bài toán Min, bài toán Max có các thay đổi sau: 1. Ở bước 3: Kiểm tra tính tối ưu + Phương án tối ưu khi Δj≥0 ∀j + Nếu ∃Δj < 0 mà aij ≤0 ∀i thì bài toán không có phương án tối ưu. 2. Ở bước 4: Tìm biến đưa vào Biến chọn đưa vào là biến có Δj âm và nhỏ nhất
  16. Ví dụ 2: Bài toán ABC 65 Vì trong các ràng buộc có các bất đẳng thức ≤ nên đưa thêm các biến phụ (Slack) vào các ràng buộc như sau : Hàm mục tiêu Max 40F+30B Ràng buộc 0,4F + 0,5B +1S1 = 20 Nguyên liệu 1 0,2B + 1S2 =5 Nguyên liệu 2 0,6F + 0,3B + 1S3 = 21 Nguyên liệu 3 Ràng buộc dấu F, B, S1, S2, S3 ≥0
  17. Ví dụ 2: Bài toán ABC 66 Thành lập bảng đơn hình đầu tiên F B S1 S2 S3 Biến λi Hệ s ố bi cơ bản 40 30 0 0 0 S1 0 0,4 0,5 1 0 0 20 50 S2 0 0 0,2 0 1 0 5 S3 0 0,3 0 0 1 21 0,6 35 0 -40 -30 0 0 0 0
  18. Ví dụ 2: Bài toán ABC 67 Bảng 2 Biến F B S1 S2 S3 Hệ λi P.án cơ số 40 30 0 0 0 bản S1 0 0 1 0 -2/3 6 0,3 20 S2 0 0 0,2 0 1 0 5 25 F 40 1 0,5 0 0 10/6 35 70 0 -10 0 0 200/3 1400
  19. Ví dụ 2: Bài toán ABC 68 Bảng 3 Biến F B S1 S2 S3 λi c ơ Hệ s ố P.án 40 30 0 0 0 bản B 30 0 1 10/3 0 -20/9 20 S2 0 0 0 -2/3 1 4/9 1 F 40 1 0 -5/3 0 25/9 25 0 0 100/3 0 400/9 1600
  20. b. Thuật toán đơn hình giải bài toán mở rộng 69 Dùng biến giả đưa bài toán dạng chính tắc về dạng chuẩn và giải bài toán ấy theo như đã trình bày. Nhận xét: Nếu bài toán mở rộng không có phương án tối ưu thì bài toán xuất phát cũng không có phương án tối ưu. Nếu bài toán mở rộng có phương án tối ưu mà các biến giả đều bằng 0 thì bỏ biến giả đi, chúng ta được phương án tối ưu của bài toán xuất phát. Nếu bài toán mở rộng có phương án tối ưu mà trong đó có ít nhất một biến giả dương thì bài toán xuất phát không có phương án tối ưu.

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản