Chủ đề 4: HAI ĐƯỜNG THẲNG VUÔNG GÓC VỚI NHAU

Chia sẻ: Huỳnh Văn Phước | Ngày: | Loại File: PPT | Số trang:7

0
762
lượt xem
111
download

Chủ đề 4: HAI ĐƯỜNG THẲNG VUÔNG GÓC VỚI NHAU

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

A.PHƯƠNG PHÁP: Để chứng minh đường thẳng a vuông góc với đường thẳng b ta có thể áp dụng một trong các cách sau: 90 1)Chứng minh góc giữa a và b bằng . 2)Chứng minh a vuông góc với mặt phẳng chứa b. 3)Chứng minh a song song với c,c vuông góc với b. 4)Sử dụng định lý ba đường vuông góc. 5)Đưa về một mặt phẳng ,sử dụng các định lý trong hình học phẳng. 900

Chủ đề:
Lưu

Nội dung Text: Chủ đề 4: HAI ĐƯỜNG THẲNG VUÔNG GÓC VỚI NHAU

  1. Chủ đề  4 HAI ĐƯỜNG THẲNG VUÔNG GÓC VỚI NHAU A.PHƯƠNG PHÁP: Để chứng minh đường thẳng a vuông góc với đường thẳng b ta có thể áp dụng một trong các cách sau: 1)Chứng minh góc giữa a và b bằng . 0 90 2)Chứng minh a vuông góc với mặt phẳng chứa b. 3)Chứng minh a song song với c,c vuông góc với b. 4)Sử dụng định lý ba đường vuông góc. 5)Đưa về một mặt phẳng ,sử dụng các định lý trong hình học phẳng.
  2. Ví dụ 1 Cho tứ diện đều ABCD,AH vuông góc (BCD),M là trung điểm AH. Chứng minh rằng : a)Các cạnh đối diện của tứ diện vuông  A góc với nhau từng đôi. b)Ba đường thẳng MB,MC,MD vuông góc với nhau từng đôi.  M B D H K C CABRI
  3. Ví dụ 2 Cho hình tròn tâm O,đường kính AB nằm trong mặt phẳng (P).Trên đường vuông góc với (P) tại A lấy điểm S,trên dường tròn (O) lấy điểm C,kẻ AI vuông góc S SC,AK vuông góc AB.Chứng minh rằng: a)Các mặt tứ diện SABC là các tam giác vuông. b) AI vuông góc IK,IK vuông góc SB.  K   I B A C CABRI
  4. Bài 2.4.1 Cho hình chóp S S.ABCD có đáy là hình thang ABCD vuông ở A và B,AD=2AB=2BC. a)Chứng minh các mặt bên của hình chóp là A I những tam giác D vuông. b)Gọi I là trung điểm của AD B C chứng minh BI vuông góc SC và CI vuông góc SD.
  5. Bài 2.4.2 S Cho hình chóp S.ABC có SA vuông góc H (ABC),AB=AC,I là trung ⊥ điểm của BC AH vuông góc SI.Chứng A C minh: a)BC vuông góc AH. I b)AH vuông góc SB. c)SC không vuông góc B với AI.
  6. Bài 2.4.3 S Cho hình chóp S.ABCD có đáy là hình vuông ,SA vuông góc với đáy .Một mặtα N P phẳng qua A và vuông góc với SC tại N,cắt M SB tại M,cắt SD tại P. a)Chứng minh :AM vuông góc SB;AN A D vuông góc SC;AP vuông góc SD. b)Chứng minh MP vuông góc SC;MC vuông góc AN B C c)Tìm diện tích thiết diện AMNP khi SA=AB=a.
Đồng bộ tài khoản