Chuyên đề Hình học Không gian

Chia sẻ: Huỳnh Văn Phước | Ngày: | Loại File: DOC | Số trang:2

1
2.281
lượt xem
998
download

Chuyên đề Hình học Không gian

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu Chuyên đề hình học không gian, dành cho các bạn học sinh lớp 12 than khảo để bổ sung bài tập cho chương 1 Hình học 12 từ căn bản đến nâng cao.

Chủ đề:
Lưu

Nội dung Text: Chuyên đề Hình học Không gian

Chuyên đề:            HÌNH HỌC KHÔNG GIAN

Mục đích: Bổ sung bài tập cho chương 1 Hình học 12 CB và NC

Bài 1:

Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên bằng 2a. Tính thể tích của khối chóp theo a.

Bài 2:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh B, [AC = asqrt 2 ] và [SB = asqrt 3 ]. Đường thẳng SA vuông góc với mặt phẳng (ABC). Tính theo a thể tích khối chóp S.ABC.

Bài 3:

Hình chóp S.ABC có đáy ABC là tam giác vuông tại A, [AB = a], [AC = asqrt 3 ], mặt bên SBC là tam giác cân tại S [(SB = SC = 2a)] và vuông góc với mặt phẳng  đáy. Tính theo a thể tích khối chóp S.ABC.

Bài 4:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Biết [SA = SB = 2a]và hai mặt phẳng (SAB) và (ABCD) vuông góc với nhau. Tính thể tích khối chóp S.ABCD.

Bài 5:

Cho hình chóp S.ABC có hai mặt bên (SAB) và (SAC) vuông góc với mặt (ABC). Đáy ABC là tam giác cân tại đỉnh A, độ dài đường trung tuyến [AM = a]. Mặt bên (SBC) tạo với đáy góc [{ m{4}}{{ m{5}}^{ m{0}}}] và [widehat {SBA} = {30^0}]. Tính thể tích của khối chóp S.ABC.

Bài 6:

Cho hình chóp đều S.ABC có các cạnh bên [SA = SB = SC = a]. Góc giữa cạnh bên và đáy bằng [{ m{6}}{{ m{0}}^{ m{0}}}]. Tính thể tích của khối chóp S.ABC theo a

Bài 7:

Đáy ABC của hình chóp SABC là tam giác vuông cân (BA=BC). Cạnh bên SA vuông góc với mặt phẳng đáy và có độ dài là [asqrt 3 ]. Cạnh bên SB tạo với một góc [{60^0}]. Tính diện tích toàn phần của hình chóp

Bài 8:

Hình chóp S.ABC có các cạnh bên nghiêng đều với đáy một góc [{60^0}], độ dài các cạnh đáy là [CB = 3,CA = 4,AB = 5]. Tính thể tích V của hình chóp

Bài 9:

Hình chóp S.ABC có đáy ABC là tam giác cân, cạnh đáy [BC = a,widehat {BAC} = alpha ]. Các cạnh bên nghiêng với đáy một góc [alpha ]. Tính thể tích hình chóp

Bài 10:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, [widehat {BAD} = {60^0},SA = SC = frac{{asqrt 5 }}{2}], SB = SD.Tính thể tích khối chóp S.ABCD.

Bài 11:

Cho hình chóp S.ABC có đáy là tam giác vuông tại A, BC = a, SA =SB = SC = [frac{{asqrt 3 }}{2}] và mặt bên SAB hợp với đáy một góc bằng 600. Tính thể tích của khối chóp S.ABC.

Bài 12:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA [ ot ] (ABC), [widehat {ACB} = {60^0},BC = a,SA = asqrt 3 ]. Gọi M là trung điểm của SB. Chứng minh (SAB) [ ot ] (SBC). Tính thể tích khối tứ diện MABC.

Bài 13:

Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, [AB = a,{ m{ }}BC = asqrt 3 ]. Tam giác SAC đều và nằm trong mặt phẳng vuông góc với đáy.Tính thể tích khối chóp S.ABC.

Bài 14:

Cho laêng truï ñöùng ABC.A’B’C’ coù ñaùy laø tam giaùc vuoâng , AB=BC=a, caïnh beân AA’= [asqrt 2 ]. Goïi M laø trung ñieåm cuûa BC. Tính theo a theå tích cuûa khoái laêng truï ABC.A’B’C’

Bài 15:

Cho khối lăng trụ đứng ABC.A’B’C’ có đáy DABC vuông tại A, AC = a, góc ACB bằng 600. Đường thẳng BC’ tạo với (AA’C’C) một góc 300.

Tính thể tích khối lăng trụ đã cho.

Bài 16:

Đáy ABC của hình lăng trụ ABC.A'B'C' là tam giác đều cạnh a. Góc giữa cạnh bên hình lăng trụ và mặt đáy bằng [{30^0}]. Hình chiếu vuông góc của đỉnh A' trên mặt phẳng đáy (ABC) trùng với trung điểm H của cạnh BC. Tính thể tích hình lăng trụ.

Bài 17:

Cho hình lăng trụ tam giác ABC.A’B’C’ có BB’ = a, góc giữa đường thẳng BB’ và mặt phẳng (ABC) bằng 600; tam giác ABC vuông tại C và (widehat {BAC}) = 600. Hình chiếu vuông góc của điểm B’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Tính thể tích khối tứ diện A’ABC theo a.

---------------------------Hết--------------------------

Để xem bản đầy đủ, đúng định dạng của bài tập chuyên đề Hình học không gian quý thầy cô vui lòng đăng nhập tài khoản trên trang tailieu.vn để tải về máy. 

Quý Thầy/cô, phụ huynh và các em học sinh có thể tham khảo bài học Ôn tập chương 1 Khối đa diện để có thêm nguồn tài liệu tham khảo trong quá trình dạy và học bài ôn tập chương 1 Hình học 12.

Nếu gặp khó khăn khi giải bài tập, các em học sinh có thể tham khảo phần Hướng dẫn giải bài tập SGK bài Ôn tập chương 1 Hình học 12.

Để chuẩn bị tốt cho kì thi THPT Quốc gia môn Toán, các em học sinh có thể tham gia làm bài kiểm tra Trắc nghiệm Khối đa diện.

Đồng bộ tài khoản