CHUYÊN ĐỀ II: HÀM SỐ BẬC NHẤT

Chia sẻ: paradise8

Tham khảo tài liệu 'chuyên đề ii: hàm số bậc nhất', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Nội dung Text: CHUYÊN ĐỀ II: HÀM SỐ BẬC NHẤT

 

  1. CHUYÊN ĐỀ II: HÀM SỐ BẬC NHẤT Bài 1 : 1) Viết phương trình đường thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4). 2) Tìm toạ độ giao điểm của đường thẳng trên với trục tung và trục hoành. Hướng dẫn : 1) Gọi pt đường thẳng cần tìm có dạng : y = ax + b. Do đường thẳng đi qua hai điểm (1 ; 2) và (-1 ; -4) ta có hệ pt : 2  a  b a  3    4   a  b b  1 Vậy pt đường thẳng cần tìm là y = 3x – 1 2) Đồ thị cắt trục tung tại điểm có tung độ bằng -1 ; Đồ thị cắt trục hoành tại 1 điểm có hoành độ bằng . 3 Bài 2 : Cho hàm số y = (m – 2)x + m + 3. 1) Tìm điều kiện của m để hàm số luôn nghịch biến. 2) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. 3) Tìm m để đồ thị của hàm số trên và các đồ thị của các hàm số y = -x + 2 ;
  2. y = 2x – 1 đồng quy. Hướng dẫn : 1) Hàm số y = (m – 2)x + m + 3  m – 2 < 0  m < 2. 2) Do đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. Suy ra : x= 3 ; y = 0 3 Thay x= 3 ; y = 0 vào hàm số y = (m – 2)x + m + 3, ta được m = . 4 3) Giao điểm của hai đồ thị y = -x + 2 ; y = 2x – 1 là nghiệm của hệ pt : y  x  2   y  2x  1  (x;y) = (1;1). Để 3 đồ thị y = (m – 2)x + m + 3, y = -x + 2 và y = 2x – 1 đồng quy cần : (x;y) = (1;1) là nghiệm của pt : y = (m – 2)x + m + 3. 1 Với (x;y) = (1;1)  m = 2 B ài 3 : Cho hàm số y = (m – 1)x + m + 3. 1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y = - 2x + 1.
  3. 2) Tìm giá trị của m để đồ thị của hàm số đi qua điểm (1 ; -4). 3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m. Hướng dẫn : 1) Để hai đồ thị của hàm số song song với nhau cần : m – 1 = - 2  m = -1. Vậy với m = -1 đồ thị của hàm số song song với đồ thị hàm số y = -2x + 1. 2) Thay (x;y) = (1 ; -4) vào pt : y = (m – 1)x + m + 3. Ta được : m = -3. Vậy với m = -3 thì đồ thị của hàm số đi qua điểm (1 ; -4). 3) Gọi điểm cố định mà đồ thị luôn đi qua là M(x0 ;y0). Ta có x0  1 y0 = (m – 1)x0 + m + 3  (x0 – 1)m - x0 - y0 + 3 = 0    y0  2 Vậy với mọi m thì đồ thị luôn đi qua điểm cố định (1;2). Bài 4 : Cho hai điểm A(1 ; 1), B(2 ; -1). 1) Viết phương trình đường thẳng AB. 2) Tìm các giá trị của m để đường thẳng y = (m2 – 3m)x + m2 – 2 m + 2 song
  4. song với đường thẳng AB đồng thời đi qua điểm C(0 ; 2). Hướng dẫn : 1) Gọi pt đường thẳng AB có dạng : y = ax + b. Do đường thẳng đi qua hai điểm (1 ; 1) và (2 ;-1) ta có hệ pt : 1  a  b a  2    1  2 a  b b  3 Vậy pt đường thẳng cần tìm là y = - 2x + 3. 2) Để đường thẳng y = (m2 – 3 m)x + m2 – 2m + 2 song song với đường m 2  3m  2  thẳng AB đồng thời đi qua điểm C(0 ; 2) ta cần :   m = 2. m 2  2m  2  2  Vậy m = 2 thì đường thẳng y = (m2 – 3m)x + m2 – 2 m + 2 song song với đường thẳng AB đồng thời đi qua điểm C(0 ; 2) Bài 5 : Cho hàm số y = (2m – 1)x + m – 3. 1) Tìm m để đồ thị của hàm số đi qua điểm (2; 5) 2) Chứng minh rằng đồ thị của hàm số luôn đi qua một điểm cố định với mọi m. Tìm điểm cố định ấy.
  5. 3) Tìm m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ x = 2 1 . Hướng dẫn : 1) m = 2. 2) Gọi điểm cố định mà đồ thị luôn đi qua là M(x0 ;y0). Ta có 1  x0   y0 = (2m – 1)x0 + m - 3  (2x0 + 1)m - x0 - y0 - 3 = 0   2   y0   5   2 1  5 Vậy với mọi m thì đồ thị luôn đi qua điểm cố định ( ). ; 22 Baứi 6 : Tìm giá trị của k để các đường thẳng sau : 6x 4x  5 y= ;y= và y = kx + k + 1 cắt nhau tại một điểm. 4 3 Bài 7 : Giả sử đường thẳng (d) có phương trình y = ax + b. Xác định a, b để (d) đi qua hai điểm A(1; 3) và B(-3; -1). Bài 8 : Cho hàm số : y = x + m (D). Tìm các giá trị của m để đường thẳng (D) : 1) Đi qua điểm A(1; 2003).
  6. 2) Song song với đường thẳng x – y + 3 = 0.
Theo dõi chúng tôi
Đồng bộ tài khoản