ĐỀ KIỂM TRA CHƯƠNG 1

Chia sẻ: phungnhi2011

Đề kiểm tra Toán 12 Chương 1_ Ứng dụng đạo hầm để Khảo sát hàm số theo chương trình chuẩn gồm những câu hỏi tự luận và trắc nghiệm dành cho các bạn lớp 12 tham khảo.

Nội dung Text: ĐỀ KIỂM TRA CHƯƠNG 1

Tr. 1




ĐỀ KIỂM TRA CHƯƠNG 1
ỨNG DỤNG ĐẠO HÀM ĐỂ KSHS
* Phần Trắc nghiệm khách quan : 4 điểm - 10 câu, mỗi câu 0.4 điểm
* Phần Tự luận : 3 câu - 6 điểm

I- Mục đích – Yêu cầu :
- Học sinh phải khảo sát và vẽ đồ thị được các dạng hàm số đã học
- Làm được một số các bài toán liên quan đến khảo sát hàm số
II- Mục tiêu :
- Học sinh phải lĩnh hội được các tính chất của hàm số và đồ thị của một số loại hàm
số thường gặp, đồng thời vận dụng được để làm một số bài toán liên quan đên tính chất hàm
số.
III- Ma trận đề :
A- MA TRẬN ĐỀ TNKQ VÀ TỰ LUẬN:

Chủ đề Nhận biết Thông hiểu Vận dụng T.số câu
TNKQ TL TNKQ TL TNKQ TL TNKQ TL
§ 1 Đơn điệu 1 1 2
0.4 0.4 0.8đ
§ 2 Cực trị 1 1 1 2 1
3 0.4 0.4 0.8đ (1) 3đ
§ 3 GTLN- GTNN 1 1 2
0.4 0.4 0.8đ
§ 4 Tiệm cận 1 1 1 2 1
0.4 0.4 1đ 0.8đ 1đ
§ 5 Sự tương giao 1 1 1 2 1
0.4 2 0.4 0.8đ 2đ
Cộng: 4 1 4 1 2 3 10 3
1.6 3 1.6 2 0.8 1 4đ 6đ

* (1) : là câu tổng hợp khảo sát hàm số

B- ĐỀ THI: Học sinh thực hiện 2 phần trắc nghiệm và tự luận sau :
1- PHẦN TRẮC NGHIỆM: ( 10 câu - 4 điểm )
Câu 1..Hàm số y = x2 + 4x - 1 nghịch biến trong khoảng: (NB)
A. (-2; -1) B. (1; 2) C. (2;5) D. ( -2;2)
Câu 2. Hàm số y = 2 x − x đồng biến trên (TH):
2



A. (− 1;0] B. (1;2 ) C. (0;1) D. [0;1]


Câu 3. Hàm số y =
1 3 1 2
3
( )
x − m + 1 x 2 + (3m − 2 )x + m đạt cực đại tại x = 1 khi: (TH)
2
A. m =1 B. m = 2 C. m = -2 D. m =-1
Tr. 2



2 x 2 + ax + 5 1
Câu 4. Hàm số y= nhận điểm ( ; 6) làm điểm cực trị khi:(VD)
x +b
2
2
A. a=4; b=1 B. a=1;b=4 C. a=-4; b=1 D. a =-1; b=4

Câu 5. Giá trị lớn nhất của hàm số y = x 3 + 3 x 2 − 9 x + 25 trên đoạn [− 3;3] là: (NB)
A. 52 B. 20 C. 37 D. 57


Câu 6: Cho hàm số y = − x 2 + 2 x . Gía trị lớn nhất của hàm số là: (TH)
A. 0 B. 1 C. 3 D. 2

Câu 7. Cho hàm số : y = x3 + x2- x có đồ thị (C). Số giao điểm của (C) và đt y=1 là: (NB)
A. 0 B. 1 C. 2 D. 3
2x + 4
Câu 8: Gọi M,N là giao điểm của đường thẳng y= x + 1 và đường cong y = khi đó
x −1
hoành độ trung điểm I của MN bằng: (VD)

5 5
A. - B. 1 C. 2 D.
2 2

3
Câu 9: Cho hàm số y= . Số tiệm cận của đồ thị là: (NB)
x−2
A. 0 B. 1 C. 2 D. 3

1
Câu 10: Cho hàm số y = . Số đường tiệm cận của đồ thị hàm số đã cho
x − 4x + 3
2


là:(TH)
A. 3 B. 2 C.1 D. 0

B- PHẦN TỰ LUẬN :(6đ)
3x − 1
Cho hàm số y = có đồ thị (C).
x +1
a- Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ( 3đ – NB)
b- Tìm m để đường thẳng y= mx cắt (C) tại 2 điểm phân biệt (2đ – TH)
c- Chứng minh tích số các khoảng cách từ một điểm M tuỳ ý thuộc (C) đến 2 đường
tiệm cận của (C) là không đổi (1đ – VD)
Đề thi vào lớp 10 môn Toán |  Đáp án đề thi tốt nghiệp |  Đề thi Đại học |  Đề thi thử đại học môn Hóa |  Mẫu đơn xin việc |  Bài tiểu luận mẫu |  Ôn thi cao học 2014 |  Nghiên cứu khoa học |  Lập kế hoạch kinh doanh |  Bảng cân đối kế toán |  Đề thi chứng chỉ Tin học |  Tư tưởng Hồ Chí Minh |  Đề thi chứng chỉ Tiếng anh
Theo dõi chúng tôi
Đồng bộ tài khoản