Đề kiểm tra HKII môn Toán 12 - Chương trình nâng cao Quảng Bình

Chia sẻ: Tai Viet | Ngày: | Loại File: PDF | Số trang:4

0
78
lượt xem
14
download

Đề kiểm tra HKII môn Toán 12 - Chương trình nâng cao Quảng Bình

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề kiểm tra hkii môn toán 12 - chương trình nâng cao quảng bình', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề kiểm tra HKII môn Toán 12 - Chương trình nâng cao Quảng Bình

  1. Së GD&§T Qu¶ng B×nh §Ò kiÓm tra häc kú II - n¨m häc 2008-2009 Tr−êng: M«n: TOÁN ch.Tr×nh: Nâng cao líp: 12 Hä tªn: Thêi gian: 90 phót (kh«ng kÓ thêi gian giao ®Ò) Sè b¸o danh: §Ò cã 01. trang, gåm cã 05. c©u. Câu I (3.5 đi m). 2x + 1 Cho hàm s y = . x −1 1. Kh o sát s bi n thiên và v đ th c a hàm s đã cho. 2. Tìm t t c các giá tr c a tham s m đ đư ng th ng y=mx+1 c t đ th c a hàm s đã cho t i hai đi m phân bi t. C©u II. (2.0 ®iÓm) 1. Xét s ph c z = x + yi . Tìm x, y sao cho (x + yi)2 = 8 + 6i . 2. Gi¶i ph−¬ng tr×nh 3 x + 31−x = 4. C©u III. (1.0 ®iÓm) Cho h×nh chãp S.ABC cã SA ⊥ (ABC), ∆ABC ®Òu c¹nh a, SA = a. TÝnh thÓ tÝch khèi chãp S.ABC. C©u IV (2.0 ®iÓm) Trong hÖ täa ®é Oxyz, cho b n ®iÓm A(0; 2; 4), B(4; 0; 4), C(4; 2; 0), D(4; 2; 4). 1. LËp ph−¬ng tr×nh mÆt cÇu ®i qua A, B, C, D. 2. TÝnh kho¶ng c¸ch tõ A tíi mÆt ph¼ng (BCD). C©u V (1.5 ®iÓm). Cho h×nh ph¼ng giíi h¹n bëi c¸c ®−êng y=xex; x=2 v y=0. TÝnh thÓ tÝch cña vËt thÓ trßn xoay cã ®−îc khi h×nh ph¼ng ®ã quay quanh trôc Ox . -HÕt-
  2. Së gi¸o dôc vµ ®µo t¹o ĐÁP ÁN SƠ LƯ C-Thang ®iÓm QU NG BÌNH kiÓm tra häc kú II - n¨m häc 2008-2009 M«n: TOÁN ch.Tr×nh: Nâng cao líp: 12 (G m 3 trang ) Câu N i dung c n đ t đư c Đi m 1. (2,0 đi m) T p xác đ nh : D = R \ { } 1 0,25 S bi n thiên : −3 • Chi u bi n thiên : y ' = < 0, ∀x ∈ D. 0,50 ( x − 1)2 Suy ra, hàm s ngh ch bi n trên m i kho ng ( −∞;1) ∪ (1; +∞ ) . • Hàm s không có c c tr . • Gi i h n : lim y = 2; lim y = 2 và lim y = +∞; lim y = −∞ . + − x →−∞ x →+∞ x →1 x →1 Suy ra, đ th hàm s có m t ti m c n đ ng là đư ng th ng: x = 1,và 0,50 CâuI ti m c n ngang là đư ng th ng: y = 2. 3,5 đi m • B ng bi n thiên : x −∞ 1 +∞ y′ - - 0,25 y 2 +∞ −∞ 2 • Đ th : (D ng như hình v )  1  - Đ th c t tr c tung t i đi m (0;-1) và c t tr c hoành t i đi m  − ; 0  .  2  - Đ th nh n đi m I (1;2) làm tâm đ i x ng. 0,50
  3. 2. (1,5 đi m) Đư ng th ng y=mx+1 c t đ th t i hai đi m phân bi t ⇔ Phương trình ( n x) 2x +1 0,75 = mx + 1 có hai nghi m phân bi t x −1 ⇔ Phương trình ( n x) mx 2 − (m + 1)x − 2 = 0 có hai nghi m phân bi t, khác 1  m≠0  m < −5 − 21     m≠0  ⇔  ∆ = (m + 1)2 + 8m > 0 ⇔  ⇔  −5 + 21 < m < 0 0,75 2   2 m + 10m + 1 > 0  m>0   m.1 − (m + 1).1 − 2 ≠ 0   KL...... 1.(1,0 đi m) .Ta có: (x + yi ) = 2 8 + 6i ⇔ 0.25 2 2 ⇔ x − y + 2 xyi = 8 + 6i x 2 − y 2 = 8 0.5 ⇔ ⇔ {x = 3; y = 1}ho c {x = −3; y = −1} . C©u II  xy = 3 2,0 ®iÓm V y giá tr x, y c n tìm là {x = 3; y = 1} ho c {x = −3; y = −1} 0.25 3 0,25® 2. (1®iÓm) P.trình ⇔ 3 x + =4 3x §Æt t = 3x, t > 0. Ph−¬ng tr×nh trë th nh t = 1 0,25® t 2 − 4t + 3 = 0 ⇔  t = 3 +) t = 1 ⇒ x = 0 0,5® +) t =3 ⇒ x = 1. KL.... 1 VSABC = SA.S ∆ABC 3 C©u III a2 3 0,5® Do ∆ABC ®Òu, c¹nh a nªn S∆ABC = 1 ®iÓm 4 a3 3 Do ®ã ta ®−îc VS . ABC = . 0,5® 12
  4. 1. (1 ®iÓm) Gäi (S) l mÆt cÇu ®i qua A, B, C, D Ph−¬ng tr×nh (S) cã d¹ng x2 + y2 + z2 + 2Ax + 2By + 2Cz + D = 0.( Đi u ki n) 4 B + 8C + D = −20 8 A + 8C + D = −32  0,5® (S) ®i qua A, B, C, D ⇔  C©u IV 2 ®iÓm 8 A + 4 B + D = −20 8 A + 4 B + 8C + D = −36  Gi¶i hÖ ®−îc A = -2, B = - 1, C = - 2, D = 0. 0,25 Thö l¹i v kÕt luËn ph−¬ng tr×nh mÆt cÇu (S) l x2 + y2 + z2 - 4x -2y - 4z = 0. 0,25® 2. (1 ®iÓm) BC = (0;2;−4), BD = (0;2;0) . 0,25® MÆt ph¼ng (BCD) ®i qua B v cã vtpt l [ BC , BD ] = (8;0;0) Ph−¬ng tr×nh mÆt ph¼ng (BCD): x - 4 = 0. 0,25® Kho¶ng c¸ch tõ A tíi (BCD) l d = 4. 0,5® 2 C©u V ∫ LËp ®−îc c«ng thøc thÓ tÝch cÇn t×m V= π x 2 e 2 x dx 0,5® 1,5 ®iÓm 0 π 4 TÝnh ®óng V= (5e − 1) (§VTT). 1,0® 4 Chú ý :- Giám kh o có th chia nh đi m thành ph n đ ch m.Đi m thành ph n nh nh t 0,25đ. - H c sinh có th làm cách khác v i đáp án mà đúng v n cho đi m t i đa. H t

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản