Đề thi Sinh Giỏi Toán Toán 10 [Olympic 30-4 lần thứ 8]

Chia sẻ: Trần Bá Phúc | Ngày: | Loại File: PDF | Số trang:6

0
264
lượt xem
126
download

Đề thi Sinh Giỏi Toán Toán 10 [Olympic 30-4 lần thứ 8]

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu " Đề thi Sinh Giỏi Toán Toán 10 [Olympic 30-4 lần thứ 8] " giúp các em học sinh có tài liệu ôn tập, cá đề thi thử, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập, đề thi một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình.Chúc các bạn học tốt.

Chủ đề:
Lưu

Nội dung Text: Đề thi Sinh Giỏi Toán Toán 10 [Olympic 30-4 lần thứ 8]

  1. KỲ THI OLYMPIC TRUY N TH NG 30/4 L N TH XIII T I THÀNH PH HU THI MÔN TOÁN L P 10 Th i gian làm bài: 180 phút Chú ý: M i câu h i thí sinh làm trên 01 t gi y riêng bi t Câu 1 (4 i m). Gi i h phương trình:  2 2 8 xy  x + y + x + y = 16   x + y = x2 − y  Câu 2 (4 i m). Cho các s th c a, b, x, y tho mãn i u ki n ax − by = 3 . Tìm giá tr nh nh t c a bi u th c F = a 2 + b 2 + x 2 + y 2 + bx + ay . Câu 3 (4 i m). Cho tam giác ABC có các góc A, B th a i u ki n: 3A 3B A− B sin + sin = 2 cos . 2 2 2 Ch ng minh tam giác ABC là tam giác u. Câu 4 (4 i m). Cho t giác l i ABCD. Xét M là i m tùy ý. G i P, Q, R, S là các i m sao cho: MB + MC + MD = 4 MP ; MC + MD + MA = 4 MQ ; MD + MA + MB = 4 MR ; MA + MB + MC = 4 MS . Tìm v trí c a i m M sao cho PA = QB = RC = SD. Câu 5 (4 i m). Trong m t ph ng t a cho m t ngũ giác l i có các nh là nh ng i m có t a nguyên. Ch ng minh r ng bên trong ho c trên c nh ngũ giác có ít nh t m t i m có t a nguyên. -------------------H T--------------------- Ghi chú: Cán b coi thi không gi i thích gì thêm
  2. áp án Toán 10 N I DUNG I M Câu 1: Gi i h phương trình:  2 2 8xy x + y + x + y = 16 (1)   x + y = x2 − y ( 2)  * i u ki n: x + y > 0 0,5 * (1) ⇔ (x2 + y2)(x + y) + 8xy = 16(x + y) 1 ⇔ [(x + y)2 – 2xy ] (x + y) – 16(x + y) + 8xy = 0 ⇔ (x + y)3 – 16(x + y) – 2xy(x + y) + 8xy = 0 ⇔ (x + y)[(x + y)2 – 16] – 2xy(x + y – 4) = 0 ⇔ (x + y – 4)[(x + y)(x + y + 4) – 2xy] = 0 x + y − 4 = 0 (3) 0,5 ⇔  2 2  x + y + 4(x + y) = 0 (4) T (3) ⇒ x + y = 4, th vào (2) ta ư c: 1  x = −3 ⇒ y = 7 x2 + x – 4 = 2 ⇔ x2 + x – 6 = 0 ⇔  . x = 2 ⇒ y = 2 (4) vô nghi m vì x2 + y2 ≥ 0 và x + y > 0. 0,5 V y h có hai nghi m là (–3; 7); (2; 2) 0,5
  3. áp án Toán 10 N I DUNG I M Câu 2: Cho các s th c a , b , x , y th a mãn i u ki n ax − by = 3 . Tìm giá tr nh nh t c a bi u th c F = a 2 + b 2 + x 2 + y 2 + bx + ay . 2 2 0,5 Vi t l i F =  x +  +  y +  + a 2 + b 2 . b a 3     ( )  2  2 4 t M = (x; y ) , A =  − ; −  , (∆ ) : ax − by = 3 . Ta có 1,5 b a    2 2 2 2  b  a 3 MA =  x +  +  y +  . Mà M ∈ (∆ ) nên MA 2 ≥ [d ( A; ∆ )] = 2 2 2 .  2  2 a + b2 ng th c x y ra khi M là hình chi u c a A trên (∆ ) . 3 3 3 3 1 Suy ra F ≥ 2 a +b 2 4 ( + a2 + b2 ≥ 2 2 )2 a +b 4 . a2 + b2 = 3 .( ) V y min F = 3 t ư c ch ng h n khi 1   (a; b; x; y ) =  2 ; 0; 6 ; − 2  .   2 2  
  4. áp án Toán 10 N I DUNG I M Câu 3: Cho tam giác ABC có các góc A, B th a i u ki n : sin  3A   3B   A− B   + sin   = 2cos  .  2   2   2  Ch ng minh tam giác ABC là tam giác u. Ta có: sin( 3A ) + sin( 3B ) = 2 sin( 3( A + B) ) cos( 3( A − B) ) . 1 2 2 4 4 1 ≥ sin( 3( A + B ) ) > 0; cos( A − B ) > 0 4 2 0≤ A− B ≤ 3A− B 0 1 2 2 2 2 Suy ra : 2sin( 3( A + B) )cos( 3( A − B) ) >0 4 4 Hay cos( 3( A − B ) )>0. 4 K t h p v i sin( 3( A + B) ) ≤ 1, ta có sin( 3( A + B) )cos( 3( A − B) ) ≤ cos( 3( A − B) ) 1 4 4 4 4 Do ó: 2 sin( 3( A + B) )cos( 3( A − B) ) ≤ 2cos( 3( A − B) ) ≤ 2cos( A − B ) 4 4 4 2 Vì v y n u sin( 3A ) + sin( 3B ) = 2cos( A − B ) thì ph i có: 1 2 2 2  A− B 3A− B   2 = π  4 ⇔A=B= .  sin( 3( A + B) ) = 1 3   4 V y tam giác ABC là tam giác u.
  5. áp án Toán 10 N I DUNG I M Câu 4: Cho t giác l i ABCD. Xét M là i m tùy ý. G i P, Q, R, S là các i m sao cho MB + MC + MD = 4MP ; MC + MD + MA = 4MQ MD + MA + MB = 4MR ; MA + MB + MC = 4MS Tìm v trí c a i m M sao cho PA = QB = RC = SD. Gi s có i m M th a bài toán. G i G là i m sao cho 0,5 5MG = MA + MB + MC + MD . T MB + MC + MD = 4MP , ta có 4 PA = 5GA . 1 Tương t 4QB = 5GB , 4 RC = 5GC , 4SD = 5GD . Do ó PA = QB = RC = SD ⇔ GA = GB = GC = GD. 1 N u ABCD là t giác n i ti p ư c trong ư ng tròn tâm O thì G 1 trùng O và M là i m duy nh t xác nh b i ( ) OM = − OA + OB + OC + OD . Ki m tra l i th y th a PA = QB = RC = SD. N u ABCD không ph i là t giác n i ti p ư c trong ư ng tròn thì 0,5 không t n t i i m M.
  6. áp án Toán 10 N I DUNG I M Câu 5: Trong m t ph ng t a cho m t ngũ giác l i có các nh là nh ng i m có t a nguyên. Ch ng minh r ng bên trong ho c trên c nh ngũ giác có ít nh t m t i m có t a nguyên. Coi nh Ai (xi; yi), i = 1, 2, 3, 4, 5. 1,5 (xi; yi) có th rơi vào nh ng trư ng h p sau: (2k; 2k’), (2k; 2k’+1), (2k+1; 2k’ + 1), ( 2k +1; 2k’) v i k, k’ ∈ Z Do a giác có 5 nh nên theo nguyên lí i rich lê, có ít nh t 2 nh 1,5 có t a thu c m t trong b n ki u trên. Khi ó trung i m c a o n n i 2 nh y s có t a nguyên. 1 Do ngũ giác là l i nên i m này mi n trong ho c trên c nh c a ngũ giác ó.
Đồng bộ tài khoản