Đề thi thử Đại học năm 2009 môn Toán - Bám sát cấu trúc của Bộ Giáo Dục

Chia sẻ: Tai Viet | Ngày: | Loại File: PDF | Số trang:5

0
70
lượt xem
13
download

Đề thi thử Đại học năm 2009 môn Toán - Bám sát cấu trúc của Bộ Giáo Dục

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử đại học năm 2009 môn toán - bám sát cấu trúc của bộ giáo dục', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề thi thử Đại học năm 2009 môn Toán - Bám sát cấu trúc của Bộ Giáo Dục

  1. Đề thi thử Đại học năm 2009 Bám sát cấu trúc của Bộ Giáo Dục ĐỀ 02 Thi thử thứ hai hàng tuần I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH ( 7,0 điểm ) x 3 Câu I : ( 2 điểm ) Cho hàm số : y  1 x 1 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số 1 . 2. Tìm trên đồ thị của hàm số 1 những điểm M có tọa độ nguyên dương sao cho khoảng cách từ M đến 2 2 đường tiệm cận bằng nhau. Từ đó chứng minh rằng M luôn nằm trong đường tròn :  x  12   y  2   9 . Câu II: ( 2 điểm ) x 2  y 2  x  y  18  1. Giải hệ phương trình :  x (x  1)y(y  1)  72  2. Giải phương trình :  3  1 sin2 x  2 sin x . cos x   3  1 cos2 x  1 e t a n 2x  e cos16x Câu III: ( 1 điểm ) Tìm giới hạn : lim x  8 cos12x Câu IV: ( 1 điểm ) Cho hình chóp S .ABCD đáy là hình vuông ABCD cạnh a , SB vuông góc với đáy và SB  2a . Tính diện tích và thể tích mặt cầu ngoại tiếp hình chóp S .ABCD . Câu V: ( 1 điểm ) Tìm tham số thực m để phương trình sau có hai nghiệm x 1; x 2 thỏa mãn 4  x 1  x 2  6 : m  3  log2  x  4   m  1 log 1  x  4   m  2  0 . 1 2 2 II. PHẦN RIÊNG ( 3,0 điểm ) Thí sinh chỉ được làm một trong hai phần ( phần 1 hoặc 2 ). 1. Theo chương trình Chuẩn : Câu VI.a ( 2 điểm ) 4 1. Trong mặt phẳng tọa độ Oxy , viết phương trình chính tắc của elip  E  có tiêu cự bằng 8 , tâm sai e  5 và các tiêu điểm nằm trên Ox . 2. Trong mặt phẳng tọa độ Oxyz cho các điểm B a; 0; 0  ,C a ; a; 0  , D  0; a; 0  , S  0; 0;2a  . Giả sử N là trung điểm của các cạnh SD . Tìm giá trị nguyên dương lớn nhất của a để khoảng cách giữa hai đường thẳng SB và a2 CN lớn hơn . 7 1  sin6 x  cos6 x Câu VII.a ( 1 điểm ) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số : y  1  sin4 x  cos4 x 2. Theo chương trình Nâng cao : Câu VI.b ( 2 điểm ) x  1  t1  x  2t2  1. Cho tam giác ABC có hai đường trung tuyến d1  :  và d2  :  và điểm A 1; 1 . Viết y  1  t1 y  1  t2   phương trình 3 cạnh của tam giác . 2. Viết phương trình mặt phẳng đi qua gốc tọa độ , vuông góc với mặt phẳng  P  : x  y  z  3 , đồng thời 2 tiếp xúc với mặt cầu S  :  x  12  y  2    z  3 2  4 . Câu VII.b ( 1 điểm ) Cho 3 số thực dương x , y, z thỏa mãn điều kiện x  y  z  1 . Chứng minh rằng : x 2 y  z  y 2  z  x  z 2 x  y     2. yz zx xy GV ra đề : Nguyễn Phú Khánh - Đà Lạt .
  2. Đề thi thử Đại học năm 2009 Bám sát cấu trúc của Bộ Giáo Dục Đáp án đề thi 02 thi ngày thứ hai hàng tuần. I. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH ( 7,0 điểm ) x 3 Câu I : ( 2 điểm ) ) Cho hàm số : y  1 x 1 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số 1 . 2. Tìm trên đồ thị của hàm số 1 những điểm M có tọa độ nguyên dương sao cho khoảng cách từ M đến 2 đường tiệm cận bằng nhau. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số 1 . Học sinh tự làm . 2. Tìm trên đồ thị của hàm số 1 những điểm M có tọa độ nguyên dương sao cho khoảng cách từ M đến 2 2 đường tiệm cận bằng nhau. Từ đó chứng minh rằng M luôn nằm trong đường tròn :  x  12   y  2   9 . Giả sử M  x 0 ; y 0  là tọa độ điểm cần tìm , có tọa độ nguyên dương, là điểm thuộc đồ thị của hàm số 1 khi đó 4 y0  x0  . x0  1 Đồ thị của hàm số 1 có tiệm cận đứng x  1  0 d1  và d M / d1   x 0  1 , có tiệm cận ngang 4 y 1  0 d2  và d M / d2   y 0  1  . x0  1 4 2 x 0  1  2 x 0  1 lo.ai  Theo yêu cầu bài toán ta có : x 0  1    x 0  1  4     . x0  1 x 0  1  2  x 0  3  y 0  3  Vậy : M  3; 3  là tọa độ cần tìm. 2 Đường tròn  x  12   y  2   9 có tâm I 1;2  và bán kính R  3 2 Vì IM 2   3  12   3  2 2  5  R 2 nên M luôn nằm trong đường tròn :  x  12   y  2   9 . Câu II: ( 2 điểm ) x 2  y 2  x  y  18  1. Giải hệ phương trình :  x (x  1)y(y  1)  72  x 2  y 2  x  y  18   2 2 (x  x )  (y  y )  18 Hệ phương trình :   2 2  *  . Đặt S  x 2  x, P  y 2  y x (x  1)y(y  1)  72  (x  x )(y  y )  72   x 3  2   x  x  12 x  4  2   y  y 6 y 2  y  3 S  P  18  S  12  Khi đó hệ *      S .P  72  P  6  x 2  2   x  x 6 x  3  2   y  y  12 y 3  y  4    Vậy hệ phương trình cho có 8 nghiệm : x ; y    3;2  ,  3; 3  ,  4;2  ,  4; 3  , 2; 3  ,  2; 4  ,  3; 3  ,  3; 4  . 2. Giải phương trình :  3  1 sin2 x  2 sin x . cos x   3  1 cos2 x  1
  3. Đề thi thử Đại học năm 2009 Bám sát cấu trúc của Bộ Giáo Dục  3  1 sin x  2 sin x .cos x   3  1 cos x  1  2 2 3 sin x  2 sin x . cos x  3 cos2 x  0 2 *   cos x  0 không là nghiệm phương trình .  cos x  0 chia cả hai vế phương trình cho cos2 x .Khi đó phương trình  tan x  3  tan x  tan  x    k    3  3 *  3. tan2 x  2 tan x  3  0   1    (k  ) tan x       tan x  tan  x    k  3      6  6 e t a n 2x  e cos16x Câu III: ( 1 điểm ) Tìm giới hạn : lim . Chú ý rằng : Ban cơ bản không học phần giới hạn lũy  x 8 cos12x thừa , logarit . Tuy nhiên bài toán thuộc đề 01 ( thứ 5) và đề 02( thứ 2 ) lại thuộc phạm viên kiến thức chung của hai ban : chuẩn và nâng cao . e t a n 2x  e cos16x e t a n 2x  1  e cos16x  1 A  lim  lim x  8 cos12x x  8 cos12x    t a n 2x cos16x x e 1 e  1 8   lim  x   x    lim x    . lim cos12x   x  8 8  x 8  8 8   ta n e t a n 2x  1 e ta n 2x  e 4 f x   f  0   Và lim   lim  lim   f '   , f  x   e t a n 2x   x  8 x x  8 x x  8 x 8 8 8 8 e cos16x  1 e cos16 x  e cos 2 g x   g  0  lim   lim   lim   g '  0  , g  x   e cos16x x 8 x x 8 x x 8 x 8 8 8    Đặt t  x   x   t  0, cos12x  cos 12  x    s in12t   8 8  8     t 1 e A   f '    g '    .lim     t 0   4e  0    8  8  sin 12t 12 3 Câu IV: ( 1 điểm ) Cho hình chóp S .ABCD đáy là hình vuông ABCD cạnh a , SB vuông góc với đáy và SB  2a . Tính diện tích và thể tích mặt cầu ngoại tiếp hình chóp S .ABCD . Ta có : SB   ABCD   SB  BD  tam giác BSD vuông tại B . S Mặt khác AB  AD  SA  AD ( định lý 3 đường vuông góc)  tam giác ASD vuông tại A . Tương tự : BC  CD  SC  CD  tam giác CSD vuông tại C . Do đó mặt cầu ngoại tiếp hình chóp S .ABCD có tâm I là trung điểm I SD SB 2  BD 2 4a 2  (a 2)2 a 6 B C SD có bán kính R     2 2 2 2 2 2 Diện tích mặt cầu : S  4 R  6 a (đvdt). 4 A D Thể tích của khối cầu : V   R 3  6 a 3 (đvtt) 3 Chú ý : Ngoài ra học sinh có thể dùng phương pháp tọa độ để giải. Câu V: ( 1 điểm ) Tìm tham số thực m để phương trình sau có hai nghiệm x 1; x 2 thỏa mãn 4  x 1  x 2  6 : m  3  log2  x  4   m  1 log 1  x  4   m  2  0 . 1 2 2
  4. Đề thi thử Đại học năm 2009 Bám sát cấu trúc của Bộ Giáo Dục Đặt t  log 1  x  4  , 4  x  6  0  x  4  2  t  1 2 Bài toán trở thành : Tìm tham số thực của m để phương trình: f t   m  3  t 2  m  1 t  m  2  0 có hai nghiệm t1; t2 thỏa mãn 1  t1  t2     0 8m  25  0     25  m  0   Ta có hệ : m  3  f  1  0  4m m  3   0   8   m  3 S 4m  5      1  0  0 2   2 m  3   Chú ý : Học sinh có thể giải bằng phương pháp hàm số. II. PHẦN RIÊNG ( 3,0 điểm ) Thí sinh chỉ được làm một trong hai phần ( phần 1 hoặc 2 ). 1. Theo chương trình Chuẩn : Câu VI.a ( 2 điểm ) 4 1. Trong mặt phẳng tọa độ Oxy , viết phương trình chính tắc của elip  E  có tiêu cự bằng 8 , tâm sai e  5 và các tiêu điểm nằm trên Ox . x 2 y2 Elip  E  :   1 a  b  0  a 2 b2 2c  8 c  4   c 4  x 2 y2 Theo bài toán ta có hệ :    a  5   E  :   1.  a 5  25 9 c 2  a 2  b 2 b  3   2. Trong mặt phẳng tọa độ Oxyz cho các điểm B a; 0; 0  ,C a ; a; 0  , D  0; a; 0  , S  0; 0;2a  . Giả sử N là trung điểm của các cạnh SD . Tìm giá trị nguyên dương lớn nhất của a để khoảng cách giữa hai đường thẳng SB và a2 CN lớn hơn . 7   a   BS   a; 0;2a  ,CN   a ;  ;a  , SC  a ;a ; 2a     2      2 a      BS ,CN    a 2 , a 2 ,  , BS ,CN  .SC  a 3    2    a 3 2a dSB ;CN    2 2 2  a2  3 a 2    a 2     2  2 a 2a a 2 14 Theo bài toán : dSB ;CN      0a  7 3 7 3 Mà a nguyên dương , do đó giá trị thực cần tìm của a là 1;2; 3; 4 và a có giá trị lớn nhất là 4. 1  sin6 x  cos6 x Câu VII.a ( 1 điểm ) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số : y  1  sin4 x  cos4 x 3 2  sin2 2x 1  sin 6 x  cos6 x 4 3t  8 y    f t  , t  sin2 2x , t   0;1 4 4 1 2 1  sin x  cos x 2  sin 2x 2t  8 2
  5. Đề thi thử Đại học năm 2009 Bám sát cấu trúc của Bộ Giáo Dục 3t  8 Hàm số f t   xác định và liên tục trên đoạn  0;1 . 2t  8 8 Ta có f ' t    0, t  0;1 nên hàm số f t  liên tục và nghịch biến trên đoạn  0;1  2t  8 2 5 Và f  0   1, f 1  . 6 5   Do đó hàm số cho đạt giá trị nhỏ nhất bằng khi sin2 2x  1  x   k , k   và đạt giá trị lớn nhất 6 4 4  bằng 1 khi sin2 2x  0  x  n , n   . 2 2. Theo chương trình Nâng cao : Câu VI.b ( 2 điểm ) x  1  t1  x  2t2  1. Cho tam giác ABC có hai đường trung tuyến d1  :  và d2  :  và điểm A 1; 1 . Viết  y  1  t1 y  1  t2   phương trình 3 cạnh của tam giác . Đường trung tuyến d1  , d2  cắt nhau tại trọng tâm G . Tìm được G . Cách 1 : Dễ thấy điểm A không thuộc đường thẳng d1  , d2  , ta giả sử B  d1  ,C  d2  . Đến đây ta có thể dung kiến thức trọng tâm tam giác hoặc trung điểm để suy ra 2 điểm A; B Viết phương trình đi qua 2 điểm. Cách 2 : Gọi A ' là điểm đối xứng của A qua trọng tâm G . Dễ thấy BA 'CG là hình bình hành nên ta viết được phương trình A 'C qua C và song song với d1  Tọa độ C là giao điểm của d2  và A 'C , từ đó suy ra tọa độ B thông qua trọng tâm G . Viết phương trình đi qua 2 điểm. 2. Viết phương trình mặt phẳng đi qua gốc tọa độ , vuông góc với mặt phẳng  P  : x  y  z  3 , đồng thời 2 tiếp xúc với mặt cầu S  :  x  12  y  2    z  3 2  4 . Mặt phẳng đi qua gốc tọa độ có phương trình : Q  : Ax  By  Cz  0, A2  B 2  C 2  0 Mặt phẳng  P   Q   A  B  C  0 Dùng điều kiện tiếp xúc của mặt cầu và mặt phẳng . Câu VII.b ( 1 điểm ) Cho 3 số thực dương x , y, z thỏa mãn điều kiện x  y  z  1 . Chứng minh rằng : x 2 y  z  y 2  z  x  z 2 x  y     2. yz zx xy 2 Trước hết ta có  x  y   0, x , y   hay x 2  xy  y 2  xy,  *  x , y   . Vì x , y  0  x  y  0 nên ta nhân cả 2 vế của đẳng thức  *  cho x  y  0 , ta được đẳng thức x 2 y2 x 3  y 3  xy x  y  , x , y  0 hay   x  y ,  1  x , y  0 y x y2 z2 z2 x2 Tương tự   y  z ,  2  y , z  0 ,   z  x ,  3  x , z  0 z y x z Cộng vế theo vế các đẳng thức 1 ,  2  ,  3  ta được điều phải chứng minh . Đẳng thức xảy ra khi 1 x y z  . 3 Bài toán này có nhiều cách giải .
Đồng bộ tài khoản