Đề thi thử ĐH môn Toán (8/6/2010)

Chia sẻ: Nhan Tai | Ngày: | Loại File: PDF | Số trang:9

0
59
lượt xem
10
download

Đề thi thử ĐH môn Toán (8/6/2010)

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi thử đh môn toán (8/6/2010)', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề thi thử ĐH môn Toán (8/6/2010)

  1. ð THI TH TOÁN ð I H C - CAO ð NG HTTP://EBOOK.HERE.VN NGÀY 8 – THÁNG 6 - NĂM 2010 PH N CHUNG CHO T T C CÁC THÍ SINH (7 ñi m) 2x + 1 Câu I (2 ñi m) Cho h m sè y = cã ®å thÞ (C). x −1 1. Kh¶o s¸t sù biÕn thiªn v vÏ ®å thÞ h m sè . 2. Víi ®iÓm M bÊt kú thuéc ®å thÞ (C) tiÕp tuyÕn t¹i M c¾t 2 tiÖm cËn t¹i Av B . Gäi I l giao hai tiÖm cËn , T×m vÞ trÝ cña M ®Ó chu vi tam gi¸c IAB ®¹t gi¸ trÞ nhá nhÊt Câu II (2 ñi m) :  x + y + x 2 − y 2 = 12  1. Gi i h phương trình:   y x 2 − y 2 = 12  2.Gi i phương trình: sin 2 x ( cos x + 3) − 2 3cos3 x − 3 3cos2 x + 8 ( ) 3 cos x − s inx − 3 3 = 0 . Câu III: Tính di n tích c a mi n ph ng gi i h n b i các ñư ng y =| x − 4 x | và y = 2 x . 2 Câu IV (1 ñi m) Cho hình chóp c t tam giác ñ u ngo i ti p m t hình c u bán kính r cho trư c. Tính th tích hình chóp c t bi t r ng c nh ñáy l n g p ñôi c nh ñáy nh . Câu V (1 ñi m) Cho phương trình x + 1 − x + 2m x (1 − x ) − 2 4 x (1 − x ) = m3 Tìm m ñ phương trình có m t nghi m duy nh t. PH N RIÊNG (3 ñi m): Thí sinh ch làm m t trong hai ph n (Ph n 1 ho c ph n 2) 1. Theo chương trình chu n. Câu VI.a (2 ñi m) 1. Cho ∆ ABC có ñ nh A(1;2), ñư ng trung tuy n BM: 2 x + y + 1 = 0 và phân giác trong CD: x + y − 1 = 0 . Vi t phương trình ñư ng th ng BC.  x = −2 + t  2. Cho ñư ng th ng (D) có phương trình:  y = −2t .G i ∆ là ñư ng th ng qua ñi m  z = 2 + 2t  A(4;0;-1) song song v i (D) và I(-2;0;2) là hình chi u vuông góc c a A trên (D). Trong các m t ph ng qua ∆ , hãy vi t phương trình c a m t ph ng có kho ng cách ñ n (D) là l n nh t. Câu VII.a (1 ñi m) Cho x, y, z là 3 s th c thu c (0;1]. Ch ng minh r ng 1 1 1 5 + + ≤ xy + 1 yz + 1 zx + 1 x + y + z 2. Theo chương trình nâng cao. Câu VI.b (2 ñi m) 1. Cho hình bình hành ABCD có di n tích b ng 4. Bi t A(1;0), B(0;2) và giao ñi m I c a hai ñư ng chéo n m trên ñư ng th ng y = x. Tìm t a ñ ñ nh C và D.  x = −1 + 2t  2. Cho hai ñi m A(1;5;0), B(3;3;6) và ñư ng th ng ∆ có phương trình tham s  y = 1 − t .M t ñi m M thay  z = 2t  ñ i trên ñư ng th ng ∆ , tìm ñi m M ñ chu vi tam giác MAB ñ t giá tr nh nh t. Câu VII.b (1 ñi m) Cho a, b, c là ba c nh tam giác. Ch ng minh  1 1 2  b c a + + + +
  2. Kú thi thö ®¹i häc- cao ®¼ng n¨m 2010 H−íng dÉn chÊm m«n to¸n C©u Néi dung §iÓm I.1 2x + 1 1,00 Kh¶o s¸t h m sè y= x −1 1. TËp x¸c ®Þnh: R\{1} 2. Sù biÕn thiªn: 2( x − 1) − (2 x + 1) −3 0,25 + ChiÒu biÕn thiªn: y ' = = ( x − 1) 2 ( x − 1) 2 H m sè nghÞch biÕn trªn c¸c kho¶ng (-∞; 1) v (1;+∞) . Cùc trÞ : H m sè ® cho kh«ng cã cùc trÞ 2x + 1 . TiÖm cËn: lim y = lim = −∞ x→1− − x→1 x −1 2x + 1 lim y = lim = +∞ x→1+ + x→1 x −1 0,25 Do ®ã ®−êng th¼ng x=1 l tiÖm cËn ®øng 2x + 1 lim y = lim =2 x→±∞ x→±∞ x − 1 VËy ®−êng th¼ng y= 2 l tiÖm cËn ngang * B¶ng biÕn thiªn: x -∞ 1 +∞ y' - - 0,5 y 2 +∞ -∞ 2 3* §å thÞ : HS tù vÏ ®å thÞ h m sè. I.2 Víi M bÊt k× ∈ (C), tiÕp tuyÕn t¹i M c¾t 2 tiÖm cËn t¹i A, B. T×m M ®Ó chu vi tam gi¸c IAB ®¹t gi¸ trÞ nhá nhÊt. 1,00  3  Gäi M  x0 ;2 +   ∈(C)  x0 − 1   −3 3 * TiÕp tuyÕn t¹i M cã d¹ng: y = ( x − x0 ) + 2 + ( x 0 − 1) 2 x0 − 1
  3. C©u Néi dung §iÓm 0,25 TiÕp tuyÕn t¹i M c¾t hai tiÖm cËn t¹i A v B nªn täa ®é A; B cã d¹ng l : A  1; 2 +  6    x0 − 1    B(2x0-1; 2) ; I(1; 2) 1 1 6 * Ta cã: S∆IAB= . IA. IB= ⋅ ⋅ 2 x0 − 1 = 2.3 = 6 (®vdt) 2 2 x0 − 1 0,25 * ∆IAB vu«ng cã diÖn tÝch kh«ng ®æi => chu vi ∆IAB ®¹t gi¸ trÞ nhá nhÊt khi IA= IB 6  x0 = 1 + 3 (HS tù chøng minh). = 2 x0 − 1 ⇒  x0 − 1  x0 = 1 − 3  * VËy cã hai ®iÓm M tháa m n ®iÒu kiÖn 0,5 M 1( 1 + 3 ; 2 + 3 ) M 2( 1 − 3 ; 2 − 3 ) Khi ®ã chu vi ∆AIB = 4 3 + 2 6 Câu Ý N i dung ði m II 2,00 1 1,00 1) CâuII:2. Gi i phương trình: sin 2 x ( cos x + 3) − 2 3cos3 x − 3 3cos2 x + 8 ( ) 3 cos x − s inx − 3 3 = 0 . sin 2 x(cos x + 3) − 2 3. cos 3 x − 3 3.cos 2 x + 8( 3. cos x − sin x) − 3 3 = 0 ⇔ 2 sin x. cos 2 x + 6 sin x. cos x − 2 3. cos3 x − 6 3 cos 2 x + 3 3 + 8( 3. cos x − sin x) − 3 ⇔ −2 cos 2 x( 3 cos x − sin x) − 6. cos x( 3 cos x − sin x) + 8( 3 cos x − sin x) = 0 ⇔ ( 3 cos x − sin x)(−2 cos 2 x − 6 cos x + 8) = 0 0,50  tan x = 3  3 cos x − sin x = 0  ⇔ 2 ⇔ cos x = 1 cos x + 3 cos x − 4 = 0  cos x = 4(loai )   π x = + kπ ⇔ 3 ,k ∈ Ζ   x = k 2π 1 1,00 ði u ki n: | x | ≥ | y | u = x 2 − y 2 ; u ≥ 0  1 u2  ð t  ; x = − y không th a h nên xét x ≠ − y ta có y =  v −  . 0,25 v = x + y  2 v  H phương trình ñã cho có d ng:
  4. u + v = 12  u  u2  2  v −  = 12   v  u = 4 u = 3 ⇔ ho c  v = 8 v = 9 u = 4  x2 − y 2 = 4  + ⇔ (I) 0,25 v = 8   x+ y =8 u = 3  x 2 − y 2 = 3  + ⇔ (II) v = 9 x + y = 9  Sau ñó h p các k t qu l i, ta ñư c t p nghi m c a h phương trình ban ñ u là 1,00 S = {( 5;3) , ( 5; 4 )} III 0,25 Di n tích mi n ph ng gi i h n b i: y =| x − 4 x | (C ) và ( d ) : y = 2 x 2 Phương trình hoành ñ giao ñi m c a (C) và (d): x ≥ 0 x ≥ 0 x = 0  2  2 | x − 4 x |= 2 x ⇔   x − 4 x = 2 x ⇔   x − 6 x = 0 ⇔  x = 2 2   2  2  0,25  x − 4 x = −2 x  x − 2x = 0 x = 6 Suy ra di n tích c n tính: 2 6 S= ∫( x ) − 4 x − 2 x dx + ∫( x ) − 4 x − 2 x dx 2 2 0 2 2 Tính: I = ∫ (| x 2 − 4 x | −2 x ) dx 0 2 0,25 Vì ∀x ∈ [ 0; 2] , x 2 − 4 x ≤ 0 nên | x 2 − 4 x |= − x 2 + 4 x ⇒ I = ∫ ( − x 2 + 4 x − 2 x ) dx = 4 0 3 6 Tính K = ∫ (| x 2 − 4 x | −2 x ) dx 2 Vì ∀x ∈ [ 2; 4 ] , x 2 − 4 x ≤ 0 và ∀x ∈ [ 4; 6] , x 2 − 4 x ≥ 0 nên 0,25 4 6 K = ∫ ( 4 x − x 2 − 2 x ) dx + ∫ ( x 2 − 4 x − 2 x ) dx = −16 . 2 4 4 52 1,00 V y S = + 16 = 3 3 IV 0,25
  5. 0,25 G i H, H’ là tâm c a các tam giác ñ u ABC, A’B’C’. G i I, I’ là trung ñi m c a AB,  AB ⊥ IC A’B’. Ta có:  ⇒ AB ⊥ ( CHH ' ) ⇒ ( ABB ' A ' ) ⊥ ( CII ' C ' )  AB ⊥ HH ' Suy ra hình c u n i ti p hình chóp c t này ti p xúc v i hai ñáy t i H, H’ và ti p xúc v i m t bên (ABB’A’) t i ñi m K ∈ II ' . G i x là c nh ñáy nh , theo gi thi t 2x là c nh ñáy l n. Ta có: 1 x 3 1 x 3 I ' K = I ' H ' = I 'C ' = ; IK = IH = IC = 3 6 3 3 x 3 x 3 Tam giác IOI’ vuông O nên: I ' K .IK = OK 2 ⇒ . = r 2 ⇒ x 2 = 6r 2 6 3 0,25 Th tích hình chóp c t tính b i: V = h 3 ( B + B '+ B.B ' ) 2 2 2 0,25 Trong ñó: B = 4x 3 = x 2 3 = 6r 2 3; B ' = x 3 = 3r 3 ; h = 2r 4 4 2 2r  2 3r 2 3 3r 2 3  21r 3 . 3 T ñó, ta có: V =  6r 3 + + 6r 2 3. = 0,25 3 2 2  3   VIa 2,00 1 1,00 ði m C ∈ CD : x + y − 1 = 0 ⇒ C ( t ;1 − t ) .  t +1 3 − t  Suy ra trung ñi m M c a AC là M  ; .  2 2  0,25  t +1 3 − t 0,25 ði m M ∈ BM : 2 x + y + 1 = 0 ⇒ 2  + + 1 = 0 ⇔ t = −7 ⇒ C ( −7;8 )  2  2 0,25 T A(1;2), k AK ⊥ CD : x + y − 1 = 0 t i I (ñi m K ∈ BC ). Suy ra AK : ( x − 1) − ( y − 2 ) = 0 ⇔ x − y + 1 = 0 .
  6. x + y −1 = 0 T a ñ ñi m I th a h :  ⇒ I ( 0;1) . x − y +1 = 0 Tam giác ACK cân t i C nên I là trung ñi m c a AK ⇒ t a ñ c a K ( −1;0 ) . x +1 y ðư ng th ng BC ñi qua C, K nên có phương trình: = ⇔ 4x + 3 y + 4 = 0 −7 + 1 8 2 G i (P) là m t ph ng ñi qua ñư ng th ng ∆ , thì ( P ) //( D ) ho c ( P ) ⊃ ( D) . G i H là hình chi u vuông góc c a I trên (P). Ta luôn có IH ≤ IA và IH ⊥ AH . d ( ( D ) , ( P ) ) = d ( I , ( P ) ) = IH  M t khác  H ∈ ( P )  Trong m t ph ng ( P ) , IH ≤ IA ; do ñó maxIH = IA ⇔ H ≡ A . Lúc này (P) v trí (P0) vuông góc v i IA t i A. r uu r r Vectơ pháp tuy n c a (P0) là n = IA = ( 6;0; −3) , cùng phương v i v = ( 2; 0; −1) . Phương trình c a m t ph ng (P0) là: 2 ( x − 4 ) − 1. ( z + 1) = 2x - z - 9 = 0 . VIIa ð ý r ng ( xy + 1) − ( x + y ) = (1 − x )(1 − y ) ≥ 0 ;  yz + 1 ≥ y + z và tương t ta cũng có  0,25  zx + 1 ≥ z + x Vì v y ta có: 1,00  1 1 1  x y z ( x + y + z) + + ≤ + + +1+1+1  xy + 1 yz + 1 zx + 1  yz + 1 zx + 1 xy + 1 x y z ≤ + + +3 yz + 1 zx+y xy + z  1 z y  = x − −  + 5 vv  yz + 1 zx + y xy + z   z y  ≤ x 1 − − +5  z+ y y+z =5
  7. Ta có: uuu r AB = ( −1; 2 ) ⇒ AB = 5 . Phương trình c a AB là: 2x + y − 2 = 0 . 0,25 I ∈ ( d ) : y = x ⇒ I ( t ; t ) . I là trung ñi m c a AC và BD nên ta có: C ( 2t − 1; 2t ) , D ( 2t ; 2t − 2 ) . 4 M t khác: S ABCD = AB.CH = 4 (CH: chi u cao) ⇒ CH = . 0,25 5  4 5 8 8 2 | 6t − 4 | 4 t = 3 ⇒ C  3 ; 3  , D  3 ; 3  Ngoài ra: d ( C ; AB ) = CH ⇔ = ⇔     5 5 t = 0 ⇒ C ( −1; 0 ) , D ( 0; −2 )  0,50 5 8 8 2 V y t a ñ c a C và D là C  ;  , D  ;  ho c C ( −1;0 ) , D ( 0; −2 ) 3 3 3 3 2 1,00 G i P là chu vi c a tam giác MAB thì P = AB + AM + BM. Vì AB không ñ i nên P nh nh t khi và ch khi AM + BM nh nh t.  x = −1 + 2t  ðư ng th ng ∆ có phương trình tham s :  y = 1 − t .  z = 2t  ði m M ∈ ∆ nên M ( −1 + 2t ;1 − t ; 2t ) . 0,25 ( ) 2 ( −2 + 2t ) + ( −4 − t ) + ( 2t ) ( 3t ) 2 2 2 2 AM = = 9t 2 + 20 = + 2 5 ( ) 2 ( −4 + 2t ) + ( −2 − t ) + ( −6 + 2t ) ( 3t − 6 ) 2 2 2 2 BM = = 9t 2 − 36t + 56 = + 2 5 ( ) ( ) 2 2 ( 3t ) ( 3t − 6 ) 2 2 AM + BM = + 2 5 + 2 5 + r r Trong m t ph ng t a ñ Oxy, ta xét hai vectơ u = 3t ; 2 5 và v = −3t + 6; 2 5 . ( ) ( ) r ( ) 2 ( 3t ) 2 | u |=  + 2 5 Ta có  r | v |= ( ) 2 ( 3t − 6 ) 2 + 2 5 0,25   r r r r r r Suy ra AM + BM =| u | + | v | và u + v = 6; 4 5 ⇒| u + v |= 2 29 r r r r r r ( ) M t khác, v i hai vectơ u , v ta luôn có | u | + | v |≥| u + v | Như v y AM + BM ≥ 2 29 r r ð ng th c x y ra khi và ch khi u , v cùng hư ng 3t 2 5 ⇔ = ⇔ t =1 0,25 −3t + 6 2 5 ⇒ M (1;0; 2 ) và min ( AM + BM ) = 2 29 .
  8. V y khi M(1;0;2) thì minP = 2 ( 11 + 29 ) 0,25 VIIb 1,00 a + b > c  Vì a, b, c là ba c nh tam giác nên: b + c > a . c + a > b  a+b c+a ð t = x, = y , a = z ( x , y , z > 0 ) ⇒ x + y > z , y + z > x, z + x > y . 2 2 0,50 V trái vi t l i: a+b a+c 2a VT = + + 3a + c 3a + b 2a + b + c x y z = + + y+ z z+ x x+ y 2z z Ta có: x + y > z ⇔ z ( x + y + z ) < 2 z ( x + y ) ⇔ > . x+ y+ z x+ y x 2x y 2y Tương t : < ; < . y+ z x+ y+ z z+x x+ y+z 0,50 x y z 2( x + y + z) Do ñó: + + < = 2. y+z z+x x+ y x+ y+z  1 1 2  b c T c là: a  + + + +
  9. * V i m = 1 thì (1) tr thành: ( ) =( ) 2 2 x + 1 − x − 2 4 x (1 − x ) = 1 − 2 x (1 − x ) ⇔ 4 x − 4 1− x x − 1− x 1 Ta th y phương trình (1) có 2 nghi m x = 0, x = nên trong trư ng h p này (1) không có nghi m duy 2 nh t. V y phương trình có nghi m duy nh t khi m = 0 và m = -1. H T

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản