Đề thi toán quốc gia bảng B năm 2002

Chia sẻ: xuananh_ht2009

Tài liệu tham khảo về đề thi môn toán quốc gia năm học 2001-2002 môn Toán Bảng B.

Nội dung Text: Đề thi toán quốc gia bảng B năm 2002

 

  1. ĐỀ THI QUỐC GIA NĂM HỌC 2001-2002 MÔN : TOÁN (Bảng B) Ngày thi thứ nhất Bài 1 : Trong mắt phẳng cho hai đường tròn cố định (O,R 1 ) và (O,R 2 ) có R 1 >R 2 . Một hình thang ABCD (AB//CD) thay đổi sao cho bốn đỉnh A,B,C,D nằm trên đường tròn (O,R 1 ) và giao điểm của hai đường chéo AC,BD nằm trên đường tron (O,R 2 ). Tìm quỹ tích giao điểm P của hai đường thẳng AD và BC . Bài 2 : Hãy tìm tất cả các hàm số f(x) xác định trên tập hợp số thực R và thoả mãn hệ thức : f(y – f(x)) = f(x 2002 - y) – 2001y.f(x) với mọi số thực x, y. Bài 3 : Cho tập hợp S gồm tất cả các số nguyên trong đoạn [1;2002]. Gọi T là tập hợp gồm tất cả các tập hợp con không rỗng của S . Với mỗi tập hợp X thuộc T , kí hiệu m(X) là trung bình cộng của tất cả các số thuộc X . Đặt : m= ∑ m( X ) |T | ở đây tổng lấy theo tất cả các tập hợp X thuộc T . Hãy tính giá trị của m. (|T| kí hiệu số phần tử của tập hợp T) ----------------------------------
  2. ĐỀ THI QUỐC GIA NĂM HỌC 2001-2002 MÔN : TOÁN (Bảng B) Ngày thi thứ hai Bài 4 : Cho a, b, c là ba số thực tuỳ ý . Chứng minh rằng : 3 6(a + b + c)(a 2 + b 2 + c 2 )≤ 27abc + 10(a 2 + b 2 + c 2 ) 2 Hỏi dấu đẳng thức xảy ra khi nào ? Bài 5 : Xét phương trình : 1 1 1 1 1 + + +…+ 2 + … + =0 2x x −1 x−4 x−k x − n2 trong đó n là tham số nguyên dương . 1/ Chứng minh rằng với mỗi số nguyên dương n, phương trình nêu trên có duy nhất nghiệm trong khoảng (0;1) ; kí hiệu nghiệm đó là x n . 2/ Chứng minh rằng dãy số (x n ) có giới hạn hữu hạn khi n → +∞ Bài 6 : Hãy tìm tất cả các số nguyên dương n thoả mãn điều kiện : n C 2n = (2n) k n trong đó k là số các ước nguyên tố của C 2n . n (C 2n kí hiệu số tổ hợp chập n của tập hợp có 2n phần tử) ----------------------------------
Theo dõi chúng tôi
Đồng bộ tài khoản