Đề thi và đáp án thi thử ĐH môn Toán năm 2010_THPT Trần Hưng Đạo lần 1

Chia sẻ: N T | Ngày: | Loại File: DOC | Số trang:3

0
118
lượt xem
49
download

Đề thi và đáp án thi thử ĐH môn Toán năm 2010_THPT Trần Hưng Đạo lần 1

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề thi và đáp án thi thử đh môn toán năm 2010_thpt trần hưng đạo lần 1', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề thi và đáp án thi thử ĐH môn Toán năm 2010_THPT Trần Hưng Đạo lần 1

  1. Sở GD & ĐT Hưng Yên ĐỀ THI THỬ ĐẠI HỌC NĂM 2010 LẦN I Trường THPT Trần Hưng Đạo Môn: Toán - Thời gian: 150 phút Đề Bài Bài 1(2 điểm) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số y = (| x | +1) 2 .(| x | −1) 2 2) Tìm các điểm trên trục hoành mà từ đó kẻ được đúng 3 tiếp tuyến đến đồ thị (C). Bài 2(3 điểm) ( x − 1)( y − 1)( x + y − 2) = 6 1) Giải hệ phương trình:  ( x, y ∈ ¡ )  x + y − 2x − 2 y − 3 = 0 2 2 2) Giải phương trình sau: sin 3 x + cos3 x = cos 2 x.(2 cos x − sin x) , ( với x∈¡ ) 3) Tìm m thực để phương trình sau có hai nghiêm thực phân biệt: (m − 1).log1/ 2 ( x − 2) − (m − 5) log1/ 2 ( x − 2) + m − 1 = 0 2 Bài 3(1 điểm) Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân (AB = BC =a > 0) và các cạnh SA= SB = SC = 3a. Trên cạnh SA, SB lấy điểm M, N sao cho SM = BN = a. Tính thể tích khối chóp SMNC. Bài 4(2 điểm) 1 2 1) Tính tích phân sau: ∫ x . ln(1 + x ) dx 0 2) Trong mặt phẳng toạ độ Oxy cho điểm A(3; 1) lập phương trình đường thẳng d qua A và cắt chiều dương của trục Ox, Oy lần lượt tại P, Q sao cho diện tích tam giác OPQ nhỏ nhất. Bài 5(2 điểm)  x =1+ t  Trong không gian Oxyz cho đường thẳng d1 :  y = 1 + 2t ; (t ∈ ¡ )  z = 1 + 2t  Đường thẳng d2 là giao tuyến của hai mặt phẳng (P): 2x – y – 1 = 0 và (Q): 2x + y + 2z – 5 = 0 1) Chứng minh rằng d1, d2 cắt nhau tại I, viết phương trình mặt phẳng chứa d1và d2 2) Viết phương trình đường thẳng d3 qua A(2; 3; 1) tạo với hai đường thẳng d1và d2 tam giác cân đỉnh I. H ết HƯỚNG DẪN ĐỀ THI THỬ ĐẠI HỌC NĂM 2010 LẦN I
  2. Môn: Toán - Thời gian: 150 phút Bài 1: 1) Khảo sát hàm số : y = x4 - 2x2 + 1 ( C) 2) Gọi A(a:0) là điểm trên trục hoành mà từ A kẻ được đến ( C) ba tiếp tuyến Phương trình đường thẳng đi qua A và có hệ số góc k là d: y = k(x-a) d là tiếp tuyến của ( C) khi hệ pt sau có nghiệm  x 4 − 2 x 2 + 1 = k ( x − a)  4 x3 − 4 x = k  ⇔ 4  4 x3 − 4 x = k  x − 2 x + 1 = (4 x − 4 x)( x − a ) 2 3 Phương trình  x2 − 1 = 0 x − 2 x + 1 = (4 x − 4 x)( x − a ) ⇔ ( x − 1)( x − 4ax + 1) = 0 ⇔  2 4 2 3 2 2  x − 4ax + 1 = 0(*) Mà x2 – 1 = 0 cho ta hai x nhung chỉ cho ta một tiếp tuyến duy nhất là d1: y = 0. Vì vậy để từ A kẻ được 3 tiếp tuyến tới (C) thì phương trình (*) phải có 2 nghiếm pb x khác ±1  3  3 a < − a > KQ:  2 hoặc  2  a ≠ −1  a ≠1   Bài 2: 1) kq (3;2) hoặc (2;3)  π  x = + kπ 2  π 2) kq  x = − + lπ ( k , l , m ∈ ¢ )  4   x = arctan 1 + mπ   2 7 3) kq m ∈ (−3;1) ∪ (1; ) 3 Bài 3: +) Chân đường cao hạ từ đỉnh S là trung điểm của AC 34 3 +) Kq a (dvtt ) 54 1 Bài 4: 1) Kq ln 2 − 2 x y 2) Kq + = 1 6 2 Bài 5: 1) Hai đường thẳng d1 và d2 cắt nhau tại I(1;1;1) và mặt phẳng chứa hai đường thẳng chính là mặt phẳng (P)
  3. 2) Gọi B là giao của d1 và d3 ( đk: B khác I). C là giao của d2 vàd3 (đk: C khác I) Ta có B(1 + t;1 +2 t;1 + 2t), C(1 + t’;1 +2 t’;1 -2 t’) Với đk: t.t ' ≠ 0 Từ điều kiện A,B,C thẳng hàng ta đi tìm toạ độ B, C. Từ đó đưa ra phương trình của d3

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản