Đề và đáp án thi thử đại học môn Toán 2010_Đề số 4

Chia sẻ: T N | Ngày: | Loại File: DOC | Số trang:7

0
91
lượt xem
39
download

Đề và đáp án thi thử đại học môn Toán 2010_Đề số 4

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'đề và đáp án thi thử đại học môn toán 2010_đề số 4', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề và đáp án thi thử đại học môn Toán 2010_Đề số 4

  1. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 07 tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 ĐỀ TỰ ÔN SỐ 04 Thời gian: 120 phút ĐỀ BÀI Câu 1. (3.0 điểm) Một lớp học có 20 học sinh, trong đó có: 4 Giỏi, 5 khá , 7 trung bình và 4 yếu. Chọn ngẫu nhiên cùng lúc 3 người. Tìm xác suất để: a) Cả 3 đều học yếu. b) Có đúng 1 học sinh giỏi. c) Được 3 người học lực khác nhau. Câu 2. (2.0 điểm) Tìm hệ số lớn nhất trong khai triển: 10  1 2x   +  3 3  Câu 3. (1.0 điểm) Gọi z1; z2 là 2 nghiệm của phương trình: z2+4z+20=0 z12 + z2 2 Tính giá trị của biểu thức: A= 2 2 z1 + z2 Câu 4. (2.0 điểm) Một hội đồng chấm thi gồm 5 người được rút thăng trong danh sách gồm 7 cô giáo và 10 thầy giáo. Gọi B là biến cố hội đồng gồm nhiều cô giáo hơn thầy giáo. Tìm xác suất của biến cố B Câu 5. (2.0 điểm)Tìm hệ số của số hạng không chứa x trong khai triển: n  2  P( x) =  3 x +   x Biết n thõa mãn: Cn + 3Cn + 3Cn + Cn = 2Cn + 2 6 7 8 9 8 ………………….Hết………………… BT Viên môn Toán hocmai.vn
  2. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 07 tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Trịnh Hào Quang
  3. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 07 tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 HƯỚNG DẪN GIẢI ĐỀ TỰ ÔN SỐ 04 Câu 1. (3.0 điểm) Một lớp học có 20 học sinh, trong đó có: 4 Giỏi, 5 khá , 7 trung bình và 4 yếu. Chọn ngẫu nhiên cùng lúc 3 người. Tìm xác suất để: d) Cả 3 đều học yếu. e) Có đúng 1 học sinh giỏi. f) Được 3 người học lực khác nhau. Giải: Số trường hợp có thể xảy ra khi chọn ngẫu nhiên là: Ω = C20 3 a) Do cả 3 học sinh đều yếu nên số trường hợp thuận lợi cho biến cố: A: “ Chọn được 3 HS yếu” là: 3 C4 Ω A = C ⇒ P( A) = 3 3 4 C20 b) Do chỉ cần chọn ra 1 HS Giỏi từ 4 HS Giỏi còn 2 HS còn lại được chọn từ 16 HS khác loại nên số trường hợp thuận lợi cho biến cố: B: “ Có đúng 1 HS giỏi” là: 1 2 C4 .C16 Ω B = C .C ⇒ P ( B ) = 1 4 2 16 3 C20 c) Do cả 3 người có học lực khác nhau nên có 4 trường hợp xảy ra sau:
  4. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 07 tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 * A1 : (G, K , TB) ⇒ Ω A1 = C4 .C5 .C7 = 4.5.7 = 140 1 1 1 * A2 : (G, K , Y ) ⇒ Ω A2 = C4 .C5 .C4 = 4.5.4 = 80 1 1 1 * A3 : ( K , TB, Y ) ⇒ Ω A3 = C5 .C7C4 = 5.7.4 = 140 1 1 1 * A4 : (G, TB, Y ) ⇒ Ω A4 = C4 .C7C4 = 4.7.4 = 112 1 1 1 4 1 472 ⇒ P(C ) = ∑ P ( Ai ) = 3 (140 + 80 + 140 + 112) = ≈ 0, 41 i =1 C20 1140 Câu 2. (2.0 điểm) Tìm hệ số lớn nhất trong khai triển: 10  1 2x   +  3 3  Giải: 0 ≤ k ≤ 10 Điều kiện:  k ∈ ¥ 10  1 2x  1 10  +  = 10 3 3  3 ∑C k =0 k 10 .(2 x) k  C10 .2k k  k +1 k +1 ≥ 1  k + 1 ≥ 1 k ≥ 19  C10 .2   2(10 − k )   3 k Max ⇔  k k ⇔ ⇔  C10 .2 ≥ 1  2(11 − k ) ≥ 1 k ≤ 22  C10−1.2k −1 k   k   3  1 ⇒ k = 7 ⇒ HS Max = 10 .27.C10 7 3
  5. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 07 tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Câu 3. (1.0 điểm) Gọi z1; z2 là 2 nghiệm của phương trình: z2+4z+20=0 Tính giá trị của biểu thức: z12 + z2 2 A= 2 2 z1 + z2 Giải:  z1 = 2 − 4i Ta có :   z2 = 2 + 4i  z12 + z2 = ( z1 + z2 ) 2 − 2 z1 z2  2 16 − 40 3 ⇒ 2 ⇒ A= = 2  z1 + z2 = 2(2 + 4 ) = 40 2 2 40 5  Câu 4. (2.0 điểm) Một hội đồng chấm thi gồm 5 người được rút thăng trong danh sách gồm 7 cô giáo và 10 thầy giáo. Gọi B là biến cố hội đồng gồm nhiều cô giáo hơn thầy giáo. Tìm xác suất của biến cố B. Giải: Gọi A là biến cố hội đồng gồm toàn cô giáo, C là biến cố hội đồng gồm 4 cô giáo và 1 thầy giáo, D là biến cố hội đồng gồm 3 cô giáo và 2 thầy giáo. Ta có : P ( B ) = P ( A ∪ C ∪ D) = P ( A) + P (C ) + P ( D) C7 + C74 .C10 + C7 .C10 139 5 1 3 2 = 5 = C17 442
  6. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 07 tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408 Câu 5. (2.0 điểm) Tìm hệ số của số hạng không chứa x trong khai triển: n  2  P( x) =  3 x +   x Biết n thõa mãn: Cn + 3Cn + 3Cn + Cn = 2Cn + 2 6 7 8 9 8 Giải: Vì : Cn + 3Cn + 3Cn + Cn = Cn + Cn + 2(Cn + Cn ) + Cn + Cn = 6 7 8 9 6 7 7 8 8 9 = Cn +1 + 2Cn +1 + Cn +1 = Cn + 2 + Cn + 2 = Cn +3 7 8 9 8 9 9 n+3 Gt ⇒ Cn +3 = 2Cn + 2 ⇔ 9 8 = 2 ⇔ n = 15 9 15 15− k k 30 −5 k 3 2  ( x)  2  15 15 ⇒ P( x) =  x +  = ∑ C15k 3   = ∑ C15 .2 .x k k 6  x k =0  x  k =0 Số hạng không chứa x tương ứng với: 30 − 5k = 0 ⇔ k = 6 ⇒ SH : C15 .26 = 320320 6 6 ………………….Hết………………… BT Viên môn Toán hocmai.vn Trịnh Hào Quang
  7. TRUNG TÂM HOCMAI.ONLINE Hà Nội, ngày 07 tháng 04 năm 2010 P.2512 – 34T – Hoàng Đạo Thúy Tel: (094)-2222-408

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản