ĐỒ ÁN THIẾT KẾ CÔNG NGHỆ CHUYỂN MẠCH NHÃN ĐA GIAO THỨC, chương 4

Chia sẻ: Nguyen Van Dau | Ngày: | Loại File: PDF | Số trang:17

0
129
lượt xem
70
download

ĐỒ ÁN THIẾT KẾ CÔNG NGHỆ CHUYỂN MẠCH NHÃN ĐA GIAO THỨC, chương 4

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Một router đường lên có tính chất tương đối so với một router khác, nghĩa là nó gần nguồn hơn router được nói đến đó dọc theo đường dẫn chuyển mạch nhãn. Đường xuống (Downstream): Hướng đi dọc theo đường dẫn từ nguồn đến đích. Một router đường xuống có tính chất tương đối so với một router khác, nghĩa là nó gần đích hơn router được nói đến đó dọc theo đường dẫn chuyển mạch nhãn. Mặt phẳng điều khiển: Là nơi mà các thông tin điều khiển như là thông tin về nhãn và định tuyến được trao...

Chủ đề:
Lưu

Nội dung Text: ĐỒ ÁN THIẾT KẾ CÔNG NGHỆ CHUYỂN MẠCH NHÃN ĐA GIAO THỨC, chương 4

  1. CHƯƠNG 4 : CÔNG NGHỆ MPLS 2.1 Một số vấn đề cơ bản 2.1.1 Các thuật ngữ, định nghĩa sử dụng trong MPLS Đường lên (Upstream): Hướng đi dọc theo đường dẫn từ đích đến nguồn. Một router đường lên có tính chất tương đối so với một router khác, nghĩa là nó gần nguồn hơn router được nói đến đó dọc theo đường dẫn chuyển mạch nhãn. Đường xuống (Downstream): Hướng đi dọc theo đường dẫn từ nguồn đến đích. Một router đường xuống có tính chất tương đối so với một router khác, nghĩa là nó gần đích hơn router được nói đến đó dọc theo đường dẫn chuyển mạch nhãn. Mặt phẳng điều khiển: Là nơi mà các thông tin điều khiển như là thông tin về nhãn và định tuyến được trao đổi với nhau. Mặt phẳng dữ liệu/Mặt phẳng chuyển tiếp: Là nơi mà hoạt động chuyển tiếp thực sự được thực hiện. Điều này chỉ có thể được thực hiện sau khi mặt phẳng điều khiển đã được thiết lập. Nhãn: Là thực thể có độ dài cố định dùng làm cơ sở cho việc chuyển tiếp. Thuật ngữ nhãn có thể được dùng trong 2 ngữ cảnh khác nhau. Một thuật ngữ liên quan tới nhãn có độ dài 20 bit, ứng với việc MPLS được triển khai trên các công
  2. nghệ lớp 2 sử dụng cấu trúc nhãn trong địa chỉ MAC, như ATM, hay FR. Thuật ngữ khác liên quan tới tiêu đề nhãn, có độ dài 32 bit, ứng với việc MPLS được triển khai trên các công nghệ lớp 2, mà địa chỉ MAC không có cấu trúc nhãn. Chúng ta sẽ còn đề cập về nhãn trong phần sau. Một điểm cần chú ý là trong MPLS nhãn có quan hệ với QoS. Ràng buộc nhãn: Là một sự kết hợp của một FEC với một nhãn. Ngăn xếp nhãn: Một tập các nhãn có thự tự được chỉ định cho gói. Việc xử lý các nhãn này cũng tuân theo một thứ tự. Lớp chuyển tiếp tương đương (FEC): FEC là một nhóm các gói, nhóm các gói này chia sẻ cùng yêu cầu trong sự chuyển tiếp chúng qua mạng. Tất cả các gói trong một nhóm như vậy được cung cấp cùng cách chọn đường tới đích. Khác với chuyển tiếp IP truyền thống, trong MPLS việc gán một gói cụ thể vào một FEC cụ thể chỉ được thực hiện một lần khi các gói vào trong mạng. MPLS không ra quyết định chuyển tiếp với mỗi datagram lớp 3 mà sử dụng khái niệm FEC. FEC phụ thuộc vào một số các yếu tố, ít nhất là phụ thuộc vào địa chỉ IP và có thể là phụ thuộc cả vào kiểu lưu lượng trong datagram (thoại, dữ liệu, fax…). Sau đó dựa trên FEC, nhãn được thoả thuận giữa các LSR lân cận từ lối vào tới lối ra trong một vùng định tuyến. Mỗi LSR xây dựng một bảng để xác định xem một gói phải được chuyển tiếp như thế nào. Bảng này được gọi là cơ sở thông tin nhãn (LIB: Label Information Base), nó là tổ hợp các ràng buộc FEC với nhãn
  3. (FEC-to-label). Và nhãn lại được sử dụng để chuyển tiếp lưu lượng qua mạng. Bộ định tuyến chuyển mạch nhãn (LSR): Thiết bị trong mạng MPLS chỉ thực hiện chuyển tiếp các gói dựa trên giá trị nhãn mà chúng mang theo. Bộ định tuyến biên nhãn (LER): Là một LSR thực hiện thêm chức năng đó là nhận các gói chưa được dãn nhãn (gói IP) và chỉ định một nhãn cho chúng tại lối vào. LER cũng thực hiện loại bỏ nhãn tại lối ra. Đường dẫn chuyển mạch nhãn (LSP): là một đường đi để gói tin qua mạng chuyển mạch nhãn trọn vẹn từ điểm bắt đầu dãn nhãn đến điểm nhãn bị loại bỏ khỏi gói tin. Các LSP được thiết lập trước khi truyền dữ liệu LSP từ đầu tới cuối được gọi là đường hầm LSP, nó là chuỗi liên tiếp các đoạn LSP giữa 2 node kề nhau. Các đặc trưng của đường hầm LSP, chẳng hạn như phân bổ băng tần, được xác định bởi sự thoả thuận giữa các node, nhưng sau khi đã thoả thuận, node lối vào (bắt đầu của LSP) xác định dòng lưu lượng bằng việc chọn lựa nhãn của nó. Khi lưu lượng được gửi qua đường hầm, các node trung gian không kiểm tra nội dung của tiêu đề mà chỉ kiểm tra nhãn. Do đó, phần lưu lượng còn lại được xuyên hầm qua LSP mà không phải kiểm tra. Tại cuối đường hầm LSP, node lối ra loại bỏ nhãn và chuyển lưu lượng IP tới node IP. Các đường hầm LSP có thể sử dụng để thực hiện các chính sách kỹ thuật lưu lượng liên quan tới việc tối ưu hiệu
  4. năng mạng. Chẳng han, các đường hầm LSP có thể được di chuyển tự động hay thủ công ra khỏi vùng mạng bị lỗi, tắc nghẽn, hay là node mạng bị nghẽn cổ chai. Ngoài ra, nhiều đường hầm LSP song song có thể được thiết lập giữa 2 node, và lưu lượng giữa 2 node đó có thể được chuyển vào trong các đường hầm này theo các chính sách cục bộ. Trong mạng MPLS các LSP được thiết lập bằng một trong 3 cách đó là: Định tuyến từng chặng, định tuyến hiện (ER) và định tuyến cưỡng bức (CR). Chúng ta sẽ đề cập đến các giao thức này chi tiết hơn trong phần sau. Cơ sở thông tin nhãn (LIB): Bảng chứa các ràng buộc nhãn/FEC mà LSR nhận được từ các giao thức phân bổ nhãn. Giao thức phân bổ nhãn (LDP): Một trong các giao thức dùng để phân bổ nhãn giữa LSR và các LSR lân cận. Các công cụ phân bổ nhãn khác gồm có: RSVP dùng trong MPLS-TE và MG-BGP sử dụng trong VPN. LDP thường sử dụng cùng với định tuyến từng chặng. Giao thức đặt trước tài nguyên (RSVP): Giao thức này khởi đầu được dự định là một giao thức báo hiệu cho chất lượng dịch vụ của các dịch vụ được tích hợp (IntServ), trong đó 1 host yêu cầu một mức QoS nào đó từ mạng. Sự đặt trước này có thể là bên trong một mạng doanh nghiệp hay trên mạng toàn cầu. RSVP với một chút sửa đổi đã tương thích với MPLS để trở thành một giao thức báo hiệu hỗ trợ MPLS-TE trong lõi. RSVP được mô tả chi tiết trong RFC 2205 và RFC 3209.
  5. Định tuyến cưỡng bức-LDP (CR-LDP): Đây là một giải pháp khác với RSVP dùng như một giao thức báo hiều để thực hiện MPLS-TE. CR-LDP thường sử dụng để phân bổ nhãn với định tuyến hiện và định tuyến cưỡng bức. 2.1.2 Một sồ vấn đề liên quan đến nhãn (Label) Không gian nhãn Nhãn có thể được ấn định giữa các LSR được lấy từ không gian nhãn. Có 2 dạng không gian nhãn đó là: Không gian nhãn theo từng giao diện và Không nhãn theo từng node (theo tất cả các giao diện). Cả 2 loại không gian nhãn này được minh hoạ trong hình 2.1. Dạng không gian nhãn thứ nhất là Không gian nhãn theo từng giao diện. Nhãn được kết hợp với một giao diện nào đó trên một LSR, chẳng hạn như giao diện DS3 hay SONET. Không gian nhãn này thường được sử dụng với các mạng ATM và FR, trong đó các nhãn nhận dạng kênh ảo được kết hợp với 1 giao diện. Không gian nhãn loại này được sử dụng khi 2 thực thể đồng cấp được kết nối trực tiếp trên một giao diện, và nhãn được sử dụng chỉ để nhận dạng lưu lượng gửi trên giao diện. Nếu LSR sử dụng một giá trị giao diện để giữ một bản ghi các nhãn trên mỗi giao diện, thì một giá trị nhãn có thể được tái sử dụng tại mỗi giao diện. Theo một nghĩa nào đó, bộ nhận dạng giao diện này trở thành một nhãn bên trong tại LSR, khác với nhãn bên ngoài được gửi giữa các LSR.
  6. LSR Không gian nhãn 1-5000 a-giao diện b-giao diện Không gian nhãn 1-5000 Không gian nhãn theo từng giao diện LSR Không gian nhãn Tất cả các giao diện 1-5000 Không gian nhãn theo từng node (tất cả giao diện) Hình 2.1. Các loại không gian nhãn Dạng không gian nhãn thứ 2 là Không gian nhãn theo từng node. Trong không gian nhãn này, nhãn đến được dùng chung với tất cả các giao diện ở trên node. Điều này có nghĩa là node (host hay LSR) phải ấn định nhãn trên tất cả giao diện. Sự duy nhất của nhãn trong không gian nhãn Một yêu cầu cần thiết với nhãn đó là một nhãn phải nhận dạng một FEC sao cho không có sự nhầm lẫn. Điều này nghe có vẻ đơn giản nhưng cũng không quá dễ để thực hiện. Chẳng hạn, một node nào đó có thể nhận được 1 nhãn giống nhau từ 2 node khác đến, hay một ví dụ khác đó là một nhãn có thể nhận được từ một node không kết nối trực tiếp.
  7. Bất cứ trường hợp nào xảy ra thì một LSR không được ràng buộc nhãn với 2 FEC khác nhau trừ khi nó có phương pháp nào đó để nhận biết rằng gói đang đến là của LSR nào. Vì vậy, mặc dù MPLS có nhiều qui tắc trong việc ràng buộc các nhãn với các FEC, song ý tưởng chính phải nhớ đó là: mỗi LSR phải có khả năng hiểu và thông dịch nhãn với FEC tương ứng của nó. Hình 2.2 đưa ra 4 kịch bản về việc MPLS thiết lập các qui tắc về tính duy nhất của nhãn trong không gian nhãn như thế nào. Trong các kịch bản này, chúng ta sử dụng kí hiệu Ru và Rd cho LSR đường lên và LSR đường xuống. Hình 2.2. Sự duy nhất của nhãn trong không gian nhãn
  8.  Kịch bản 1: LSR Rd ràng buộc nhãn L1 với FEC F và gửi ràng buộc này tới LSR đồng cấp Ru1.  Kịch bản 2: LSR Rd ràng buộc nhãn L2 với FEC F và gửi ràng buộc này tới LSR đồng cấp Ru2.  Kịch bản 3: LSR Rd ràng buộc nhãn L với FEC F1 và gửi ràng buộc này tới LSR đồng cấp Ru1.  Kịch bản 4: LSR Rd ràng buộc nhãn L2 với FEC F2 và gửi ràng buộc này tới LSR đồng cấp Ru2. Với kịch bản 1 và 2, đó là vấn đề cục bộ liệu L1 có bằng L2. Với kịch bản 3 và 4, qui tắc sau được áp dụng: Nếu khi Rd nhận được 1 gói mà nhãn trên cùng của nó là L, Rd có thể xác định liệu nhãn đó được đặt vào bởi Ru1 hay Ru2, lúc đó MPLS không yêu cầu F1 bằng F2. Do đó, với kịch bản 3 và 4, Rd đang sử dụng các không gian nhãn khác nhau để phân bổ ràng buộc tới Ru1 và Ru2, đó là ví dụ về việc sử dụng không gian nhãn theo từng giao diện. Ngăn xếp nhãn Chuyển mạch nhãn được thiết kế để mở rộng các mạng lớn, và MPLS hỗ trợ chuyển mạch nhãn với các hoạt động phân cấp; sự hỗ trợ này dựa trên khả năng của MPLS đó là có thể mang nhiều hơn một nhãn trong gói. Ngăn xếp nhãn cho phép các LSR được thiết kế để hoán đổi thông tin với một LSR khác và tác động như các node biên trong miền các mạng lớn và các LSR khác. Cần chú ý rằng những LSR này là các node bên trong và không liên quan đến chính chúng với các đường đi liên miền hay với các nhãn được kết hợp với những tuyến đường này.
  9. Quá trình xử lý một gói đã được dãn nhãn là độc lập hoàn toàn với mức phân cấp; nghĩa là, mức nhãn là không liên quan tới LSR. để làm cho quá trình đơn giản, quá trình xử lý luôn dựa vào nhãn trên cùng, mà không xem xét đến khả năng đó là: có thể một số nhãn khác đã ở trên nó trước đây hay một số nhãn khác đang ở bên dưới nó lúc này. Nếu ngăn xếp nhãn của gói có độ sâu m, nhãn tại đáy của ngăn xếp được xem như là nhãn mức 1, nhãn trên nó là nhãn mức 2, và nhãn trên cùng là nhãn mức m. Trong hình 2.3, chúng ta có 3 LSR là các thành viên của cùng một miền (miền B) và LSR A và LSR C là các LSR biên. Ví dụ này cũng thừa nhận rằng miền này là miền chuyển tiếp (nghĩa là gói không bắt đầu hay kết thúc tại miền này). Người ta muốn cô lập các LSR bên trong miền khỏi những hoạt động này. LSR X và LSR Y là các router biên được thiết kế cho miền A và miền C. Để phát hành các địa chỉ từ miền C, LSR Y phân phát thông tin tới LSR C, LSR C lại phân phát thông tin đến LSR A, sau đó LSR A phân phát thông tin tới LSR X. Thông tin không được phân phát tới LSR B bởi vì LSR B là LSR bên trong.
  10. Hình 2.3. Ngăn xếp nhãn và cấu trúc phân cấp Hai mức nhãn được sử dụng. Khi lưu lượng đi qua miền B, mức nhãn thứ nhất được sử dụng và các nhãn liên quan đến các hoạt động liên miền được đẩy xuống trong ngăn xếp nhãn của gói. Hình 2.4. Ví dụ về ngăn xếp nhãn: LSR E lấy nhãn ra khỏi ngăn xếp
  11. Hình 2.4 biểu diễn các ví dụ về ngăn xếp nhãn. Các node A, B, G, và H là các node bên ngoài (các LSR lối ra và lối vào) còn miền bên trong gồm các node C, D, E và F. Các bảng LSR tại node C và F có ngăn xếp nhãn với độ sâu là 2. Các bảng LSR D và LSR E có ngăn xếp nhãn với độ sâu 1. Trong ví dụ này, các khả năng MPLS được mở rộng ra ngoài tới các node A, B, G và H. Dó đó, đằng sau những node này có thể là những node không có khả năng MPLS, chẳng hạn như các trạm làm việc hay các server. Node A gửi 1 gói tới node C với nhãn 21. Node C hỏi bảng nhãn của nó và quyết định rằng nhãn được đẩy xuống và nhãn 33 được sử dụng giữa node C và node D. Gói gửi tới node D có 2 nhãn, nhưng nhãn 21 không được kiểm tra bởi node D. Bảng nhãn của nó chỉ đạo nó hoán đổi nhãn 33 cho nhãn 14 và chuyển tiếp gói ra giao diện e, tuyến nối đến node E. Khi node E nhận được gói này, bảng nhãn của nó hướng dẫn node E lấy nhãn tiếp theo và sau đó gửi gói tới giao diện s. Bây giờ chỉ có 1 nhãn trong tiêu đề. Tại node F, giá trị nhãn 21 trên giao diện b được ràng buộc với nhãn 70 trên giao diện d, tuyến nối tới node G. Ví dụ thứ 2 trong hình 2.4 là một gói đến từ node B, với giá trị nhãn 42. Bảng nhãn tại node C chỉ ra rằng nhãn này được đẩy vào ngăn xếp, và nhãn 33 được sử dụng như là nhãn bên ngoài. Quá trình xử lý sau đó là giống như trong ví dụ thứ nhất cho đến khi gói đến node F. Đến đây, nhãn 42 được lấy ra và được ràng buộc với nhãn 61 trên giao diện c, tuyến nối đến node H. Trong ví dụ này, chỉ một ràng buộc nhãn được cần tại các LSR bên trong để xử lý 2 nhãn bên ngoài. Tất nhiên, có thể ràng
  12. buộc hàng ngàn nhãn từ các node bên ngoài tới một ràng buộc nhãn ở bên trong miền. G A IP 21 IP 21 33 IP 21 14 IP 21 12 IP 70 a d C c a D e b E s b F b c B IP 42 IP 42 33 IP 42 14 IP 42 12 IP 61 Table H Table Table Table IN OUT IN OUT IN OUT IN OUT a.21 c.push 33 a.33 e.14 b.14 s.12 b.12 d.pop b.42 c.push 33 b.12 c.pop Hình 2.5. Ví dụ về ngăn xếp nhãn: LSR F lấy nhãn ra khỏi ngăn xếp Hình 2.5 biểu diễn một ví dụ khác. Trong ví dụ này, LSR F thực hiện lấy nhãn ra khỏi ngăn xếp chứ không phải là LSR E làm điều đó. LSR E xử lý nhãn bên ngoài như là LSR D đã làm. Hình 2.6. Ví dụ về ngăn xếp nhãn: nhãn được lấy 2 lần tại LSR E và F
  13. Hình 2.6 biểu diễn thêm một ví dụ về ngăn xếp nhãn. Trong ví dụ này, các node G và H không là các LSR. Chúng là các trạm đầu cuối, chẳng hạn như là các router hay server, chúng không được cấu hình để hỗ trợ các hoạt động MPLS. Có 2 sự lấy nhãn trong ngăn xếp xảy ra, đầu tiên là tại LSR E và thứ hai là tại LSR F. Cả 3 kịch bản về ngăn xếp nhãn trong các hình 2.4, 2.5 và 2.6 đều được cho phép sử dụng trong mạng MPLS. Sự duy trì nhãn MPLS định nghĩa 2 chế độ để duy trì nhãn.  Chế độ thứ nhất là chế độ duy trì đầy đủ. Trong chế độ này các ràng buộc nhãn và các tiền tố địa chỉ được lưu giữ trong cả các node đường lên và các node đường xuống.  Chế độ thứ hai là chế độ duy trì nhãn hạn chế. Trong chế độ này LSR chỉ lưu trữ ràng buộc nhãn được ấn định bởi LSR đường xuống. Để tóm tắt các chế độ duy trì nhãn, các đặc tả MPLS đưa ra những phương pháp sau để duy trì hay huỷ bỏ nhãn.  Một LSR Ru có thể nhận 1 ràng buộc nhãn với 1 FEC nào đó từ một LSR Rd, mặc dù Rd này không là chặng kế tiếp của Ru (hay không còn là chặng kế tiếp của Ru) với FEC đó.  Ru có hơn 1 sự lựa chọn liệu có giữ một bản ghi về các ràng buộc như vậy, hay là loại bỏ các ràng buộc như vậy.
  14.  Nếu Ru giữ một bản ghi những ràng buộc như vậy, nó có thể sử dụng lại ràng buộc nếu sau đó Rd trở thành chặng kế tiếp của sau đó. Nếu Ru loại bỏ những ràng buộc như vậy thì sau đó nếu Rd trở thành chặng kế tiếp, ràng buộc sẽ phải yêu cầu lại.  Nếu một LSR hỗ trợ “chế độ duy trì nhãn đầy đủ”, nó duy trì các ràng buộc giữa một nhãn và một FEC nhận được từ các LSR không là chặng kế tiếp của FEC đó. Nếu LSR hỗ trợ “chế độ duy trì nhãn hạn chế”, nó sẽ loại bỏ các ràng buộc như thế. Tổng hợp FEC Một cách để phân chia lưu lượng vào trong các FEC là tạo 1 FEC riêng biệt cho mỗi tiền tố địa chỉ xuất hiện trong bảng định tuyến, như biểu diễn trong hình 2.7(a). Giải pháp này có thể tạo ra 1 tập các FEC cho phép cùng đi một đường tới node lối ra. Trong tình huống này, bên trong một miền MPLS, những FEC riêng biệt thực là vô ích. Theo quan điểm MPLS, hợp nhất những FEC đó thành một FEC. Tình huống này tạo ra một sự lựa chọn: Ràng buộc một nhãn riêng với 1 FEC, hay ràng buộc 1 nhãn với tổ hợp FEC và sử dụng nhãn kết hợp cho tất cả lưu lượng bên trong tổ hợp, như biểu diễn trong hình 2.7(b).
  15. (a) Các FEC riêng biệt cho mỗi tiền tố địa chỉ (b) Tổng hợp FEC Hình 2.7. Không tổng hợp và tổng hợp FEC
  16. Thủ tục ràng buộc 1 nhãn duy nhất với tổ hợp các FEC, để tạo thành 1 FEC (trong cùng miền MPLS), và áp dụng nhãn đó cho tất cả lưu lượng trong tổ hợp FEC được gọi là sự tổng hợp (aggregation). Sự tổng hợp có thể làm giảm số các nhãn được cần để xử lý một tập các gói và cũng có thể giảm lưu lượng điều khiển phân bổ nhãn. Một tập các FEC có thể (a) được tổng hợp vào trong một FEC duy nhất, (b) được tổng hợp vào trong một tập các FEC, (c) hay không được tổng hợp tý nào. Đặc tả về MPLS sử dụng thuật ngữ “hạt” để mô tả sự tổng hợp (ở đây có thể hiểu khái niệm hạt là liên quan đến kích thước và mức mô tả, phân biệt chi tiết của dòng lưu lượng đến đâu, và rõ ràng là khi tổng hợp thì các dòng lưu lượng nhỏ tạo thành dòng lưu lượng lớn hơn nên các tham số mô tả dòng lớn sẽ không chi tiết, cụ thể như các dòng nhỏ - do đó người ta nghĩ đến việc dòng lưu lượng lúc này thô như các hạt đang chảy), có những kiểu hạt sau đây: (a) dạng hạt thô nhất, (b) dạng hạt mịn nhất. Hợp nhất nhãn Với hợp nhất nhãn, nhiều gói đến với nhãn khác nhau được áp một nhãn duy nhất trên giao diện lối ra (cùng giao diện). Ý tưởng được minh hoạ trong hình 2.8. LSR C gửi 3 gói tới LSR D, với nhãn 21, 24, và 44 trong các tiêu đề nhãn. LSR D hợp nhất những nhãn này vào trong nhãn 14 và gửi 3 gói tới LSR E.
  17. Hình 2.8. Hợp nhất nhãn MPLS hỗ trợ cả 2 loại LSR, đó là loại LSR có thể thực hiện hoạt động hợp nhất và LSR không hỗ trợ hoạt động hợp nhất. Những qui tắc cơ bản cho cả 2 loại LSR này là khá đơn giản: (a) một LSR đường lên hỗ trợ hợp nhất nhãn chỉ cần được gửi 1 nhãn cho các FEC; (b) một LSR đường lên không hỗ trợ hợp nhất nhãn phải được gửi 1 nhãn cho mỗi FEC; (c) nếu một LSR đường lên không hỗ trợ hợp nhất nhãn, thì nó phải yêu cầu 1 nhãn cho mỗi FEC. Nhiều kết quả xung quanh việc hợp nhất nhãn giải quyết vấn đề thực hiện MPLS trên các mạng ATM. Do đó, chúng ta sẽ nói vấn đề này rõ hơn trong phần ứng dụng của MPLS – MPLS với mạng ATM. 2.1.3 Một số vấn đề liên quan đến ràng buộc nhãn (FEC/Label)

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản