ĐƯỜNG TRÒN NGOẠI TIẾP ĐƯỜNG TRÒN NỘI TIẾP

Chia sẻ: cybershot111

HS nắm định nghĩa , tính chất đường tròn ngoại tiếp , đường tròn nội tiếp 1 đa giác . Cách xác định tâm của đa giác đều đồng thời cũng là tâm đường tròn ngoại tiếp ,nội tiếp đa giác đều đó - Vận dụng tính được cạnh theo bán kính và ngược lại của tam giác đều hình vuông , lục giác đều nội , ngoại tiếp đường tròn.

Nội dung Text: ĐƯỜNG TRÒN NGOẠI TIẾP ĐƯỜNG TRÒN NỘI TIẾP

ĐƯỜNG TRÒN NGOẠI TIẾP -

ĐƯỜNG TRÒN NỘI TIẾP




I. Mục tiêu :

- HS nắm định nghĩa , tính chất đường tròn ngoại tiếp , đường

tròn

nội tiếp 1 đa giác . Cách xác định tâm của đa giác đều

đồng thời

cũng là tâm đường tròn ngoại tiếp ,nội tiếp đa giác đều đó

- Vận dụng tính được cạnh theo bán kính và ngược lại của tam

giác

đều hình vuông , lục giác đều nội , ngoại tiếp đường tròn

II.Chuẩn bị : GV nghiên cứu bài dạy , dụng cụ dạy hình , bảng phụ

HS : Nắm khái niệm đa giác đều – Dụng cụ học hình

III. Hoạt động dạy học :



HĐ 1: Kiểm tra bài cũ :
Các kết luận sau đúng hay sai :

a. BAD + BCD = 1800 b. ABD = ACD = 400

c. ABC = ADC = 1000 d. ABC = ADC = 900

e. ABCD là hình chữ nhật f. ABCD là hình bình hành

h. ABCD là hình thang cân g. ABCD là hình thoi

HĐ 2 :

Định nghĩa :

Nhìn vào hình vẽ ta có - Đường tròn ngoại tiếp hình
A B

.
đường tròn (O; R) vuông ;
Or
R
đi qua các đỉnh của hình Đi qua các đỉnh của hình vuông
D

vuông , (O,r) tiếp xúc các - Đường tròn nội tiếp hình
I
cạnh hình vuông . vuông :
C
Thế nào là đường tròn Tiếp xúc các cạnh hình vuông

ngoại tiếp hình vuông ? Nội tiếp hình vuông

Đọc định nghĩa SGK A B
I
. - Đường tròn ngoại tiếp và
C
F O

đường tròn nội tiếp hình vuông
Làm ? SGK
E D
là 2 đường tròn đồng tâm

Định nghĩa : SGK

Làm thế nào vẽ được
lục giác đều nội tiếp

đường tròn (O) Ta có tam giác OAB đều (OA =

OB và AOB = 600) nên AB =
Vì sao tâm O cách đều các cạnh của lục giác

đều ? OA = OB = R

Vẽ các dây cung : AB = BC =

CD = DE = EF = FA = 2cm =>

các dây đó cách đều tâm O . Vậy

tâm O cách đều các cạnh của lục

giác đều



Đường tròn (O ; r) là đường tròn

nội tiếp lục giác đều



3: Định lý :

Có phải đa giác nào cũng nội tiếp được Không phải bất kỳ đa giác nào cũng

đường tròn phải không ? nội tiếp được đường tròn

Tam giác đều , hình vuông … có mấy đường Định lý : Bất kỳ đa giác đều nào

tròn ngoại tiếp , nội tiếp ? cũng có 1 và chỉ 1 đường tròn ngoại

tiếp , đường tròn nội tiếp
HĐ 4: Luyện tập :
A
J
I
Bài tập 62 SGK : Vẽ tam đều ABC có cạnh bằng 3 cm .
RO
Tính R ; r theo cạnh của tam giác
r
B C
H
33
Trong tam giác vuông AHD có AH = AB Sin 600 = cm
2
K
233
2
R = OA = AH = = 3 cm
32
3

Vẽ đường tròn tâm O bán kính OH nội tiếp tam giác đều ABC

3
1
r = OH = AH = cm
2
3




HĐ 5: Hướng dẫn :

- Nắm vững định nghĩa , định lý đường tròn ngoại tiếp , nội tiếp 1 đa giác

- Vẽ được lục giác đều , hình vuông , tam giác đều nội tiếp đường tròn và

cách tính cạnh đa giác đều theo R , r và ngược lại

- Làm các bài tập ở SGK và SBT
Đề thi vào lớp 10 môn Toán |  Đáp án đề thi tốt nghiệp |  Đề thi Đại học |  Đề thi thử đại học môn Hóa |  Mẫu đơn xin việc |  Bài tiểu luận mẫu |  Ôn thi cao học 2014 |  Nghiên cứu khoa học |  Lập kế hoạch kinh doanh |  Bảng cân đối kế toán |  Đề thi chứng chỉ Tin học |  Tư tưởng Hồ Chí Minh |  Đề thi chứng chỉ Tiếng anh
Theo dõi chúng tôi
Đồng bộ tài khoản