Giao_an:CẤP SỐ NHÂN

Chia sẻ: Tran Vu | Ngày: | Loại File: DOC | Số trang:8

0
187
lượt xem
33
download

Giao_an:CẤP SỐ NHÂN

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

1. Kiến thức: a. Định nghĩa CSN b. Các tính chất của CSN 2. Kỹ năng: Biết vận dụng công thức của CSN vào giải toán 3. Tu duy: a. Tư duy logic b. Hiểu được ý nghĩa của định nghĩa CSN 4. Thái độ: Cẩn thận, chính xác sưu tầm từ internet

Chủ đề:
Lưu

Nội dung Text: Giao_an:CẤP SỐ NHÂN

  1. Tiết 55 Bài tập CẤP SỐ NHÂN I. Mục tiêu: 1. Kiến thức: a. Định nghĩa CSN b. Các tính chất của CSN 2. Kỹ năng: Biết vận dụng công thức của CSN vào giải toán 3. Tu duy: a. Tư duy logic b. Hiểu được ý nghĩa của định nghĩa CSN 4. Thái độ: Cẩn thận, chính xác II. Phương tiện: a. HS:sgk, vở… b. GV: Giáo án, sách tham khảo… III. Phương pháp: Gợi mở và vấn đáp IV. Tiến trình bài học và các hoạt động A. Kiểm tra bài củ: a. Định nghĩa CSN, nếu (u n ) là cấp số nhân có công bội q, viết công thức truy hồi của u n . b. Công thức tìm số hạng tổng quát của CSN B. Bài mới: Hoạt động của thầy Hoạt động của trò Bài 1 Giải : n −1 a. Biết u1 = 2, u 6 = 486. Tìm q a. Áp dụng u n = u1 q Ta có : u 6 = u1 q 5 ⇒ 486 = 2q 5 ⇒ q 5 = 243 ⇒ q = 3. 2 8 Giải b. b. Biết q = , u4 = . Tìm u1 u 4 = u1 q 3 . 3 21 3 3 8 2 8 2 27 9 = u1   ⇒ u1 =   = = 21 3 21  3  21 7 c. Biết u1 = −3, q = − 2 Giải c. Từ Hỏi – 768 là số hạng thứ? u n = u1 q n −1 ta có : − 3.( − 2 ) n −1 = −768 ⇒ ( − 2) = 256 = ( − 2 ) n −1 8 KT và sửa chữa sai sót cho học sinh ⇒ n −1 = 8 ⇒ n = 9`
  2. Bài 2. Tìm các số hạng của một CSN gồm 5 số hạng, biết: a. u 3 = 3  u 5 = 27 Hướng dẫn HS đua u 5 , u 3 theo u1 và q rồi u5 tiến hành chia để triệt tiêu u1 và tìm u3 được q Giải b. b. u 3 − u 2 = 25 u 4 − u 2 = 25 (  u q 3 − q = 25 ⇔ 1 2 )   u 5 − u1 = 50 u 3 − u1 = 50  1 (  u q − 1 = 50 ) Hướng dẫn học sinh áp dụng công thức:  200 u1 = − 3  u n = u1 q n −1 ⇔ Ta có hệ phương trình 2 ẩn theo u1và q q = 1   2 giải hệ. vậy CSN đó là: Bài 3: Tìm CSN có 6 số hạng, biết tổng Giải: của 5 số hạng đầu là 31 và tổng 5 số  u1 + u 2 + u 3 + u 4 + u 5 = 31   hạng sau là 62.  u 2 + u 3 + u 4 + u 5 + u 6 = 62 HD:Nếu Đưa tất cả về theo u1và q1 : Giải u1 + u 2 + u 3 + u 4 + u 5 = 31 khó ⇒ u1 q + u 2 q + u 3 q + u 4 q + u 5 q = 62 Chú ý: 5 số hạng sau có thể đưa về theo 5 s5 = 31 q = 2 số hạng đầu  ⇒ qs5 = 62 u1 = 1 vậy CSN là: 1,2,4,8,16,32 Bài 4 : CSN gồm 4 số, tổng của số hạng đầu và cuối là 27, tích của 2 số hạng còn lại là 72. Tìm các số hạng:
  3. Ta có: u1 + u 4 = 27  u 2 u 3 = 72  u1 + u1 q = 27 3  u1 q.u1 q 2 = 72  ( ) u1 1 + q 3 = 27   2 3 u1 q = 27  HDHS lý luận u11 ≠ 0 72 ⇒ q3 = 2 u1  72  Thay u1 1 + 2  = 27  u   1  u13 + 72u1 = 27u12 u13 + 72u1 + 27u12 = 0 ( ) u1 u12 + 72u1 + 27 = 0  1 1 u1 = 24 → q 3 = → q = → 24,12,6,3 8 2  u1 = 3 → q = 8 → q = 2 → 3,6,12,24 3  III. CỦNG CỐ Nhắc lại các tính chất của CSN HD về nhà làm bài tập 5sgk. Hướng dẫn: Tỉ lệ tăng dân số tỉnh X là 1,4% Nghĩa là, nếu A là số dân hiện tại của tỉnh X thì sau 1 năm dân số tỉnh X sẽ là: 1,4 A+ A = A(1 + 0,014) = A.1,014 100 Sau 1 năm nữa dân số sẽ là : A.1,014.1,014 Vậy nhận xét gì về số dân của tỉnh X hàng năm Tiết 56: Bài tập CẤP SỐ NHÂN ( tiếp theo) I. Mục tiêu 1. Kiến thức: Định nghĩa cấp số nhân và các tính chất của cấp số nhân. 2. Kỷ năng: Biết vận dụng định nghĩa cấp số nhân vào giải các bài toán thực tế. 3. Tư duy: Tư duy, logic, tổng quát hoá
  4. Hiểu được ý nghĩa của định nghĩa cấp số nhân. 4. Thái độ: Cẩn thận, chính xác. II. Phương tiện: Học sinh: Sách giáo khoa, vở…. Giáo viên: Giáo án, hình vẻ phụ. III. Phương pháp: Gợi mở và vấn đáp. IV. Tiến trình bài học: A. Kiểm tra bài cũ: 1. ĐN cấp số nhân: Nếu CSN nếu (Un) là CSN có công bội q, viết công thức truy hồi của Un ? 2. Phát biểu định lý Pitago trong tam giác? B. Bài mới: Hoạt động của thầy Hoạt động của trò Bài tập 5/Sgk/123 Gọi 1 HS lên giải: Bài tập này giáo viên đã hướng dẫn ở tiết trước. Giải bài 5: Số dân hàng năm của tỉnh X là các số hạng của CSN với công bội: q = 1,014 và u1 = 1,8 triệu. Dân số của tỉnh X sau 5 năm là: u = 1,8 x(1,014) ≈ 1,9 triệu Sau 10 năm là: u11 = 1,8 x(1,014)10 ≈ 2,1 triệu Kiểm tra và hoàn chỉnh lời giải Bài tập 6/Sgk/123: Giáo viên dùng bảng phụ đưa ra hình vẽ minh hoạ. → Cạnh của hv C1 là a1 = 4 Cạnh của hv C2 là
  5. 2 2 1  3  10a1 a 2 =  a1  +  a1  = - Gọi a n là độ dài cạnh của hv 4  4  4 Cn . CM dãy (a n ) là một CSN và viết ở dạng công thức truy hồi. 2 2 - Hướng dẫn HS tính cạnh của một số 1  3  10a 2 a3 =  a 2  +  a 2  = hv từ ngoài vào. 4  4  4  10a n −1 → an = 4 → Ta có: 10a n a n =1 = , ∀n 4 ( ) Vậy dãy a n là 1 CSN có: - Từ đó Hướng dẫn HS dự đoán công 10 a1 = 4, q = thức của a n . 4 - Xem lại định nghĩa CSN, để CM a n là CSN thì cần CM ? → S hv = a 2 (a là độ dài cạnh) x1 = 0,9 - Gọi HS nhắc lại công thức tính Shv, → x 2 = 0,99 biết cạnh thì tính được diện tích. Cho HS về nhà làm. x3 = 0,999 x1 = 1 − 0,1 = 1 − 10 −1 Bài 7: Cho số x n = 0,99  9 → x 2 = 1 − 0,01 = 1 - 10 -2 Tìm công thức biểu thị x n qua n. x3 = 1 − 0,001 = 1 − 10 −3 - HD: Gọi 1 HS tìm x1 , x 2 , x3 → x n = 1 − 10 − n - Hướng dẫn HS viết lại xi như thế nào để thể hiện rõ chỉ số i ? - Từ đó tổng quát lên cho x n ?
  6. Bài 8: Tính tổng x1 = 10 − 1 = 101 − 1 S = 9 + 99 + 999 +  + 999 9 x 2 = 100 − 1 = 10 2 − 1 → x3 = 1000 − 1 = 10 3 − 1 - HD: Các số  x1 = 9 x n = 10 n − 1 x 2 = 99 Vậy: x3 = 999  ( ) ( ) ( S = (10 − 1) + 10 2 − 1 + 10 3 − 1 +  + 10 n − 1 ) Chưa phải lập thành CSN, cần viết lại các số hạn này sao cho thể hiện rõ chỉ S = 10 + 10 2 + 10 3 +  + 10 n − n số i? 10 n − 1 S = 10 −n 10 − 1 V. Củng cố: + Nhắc lại định nghĩa và tính chất của CSN. + BTVN: Cho các số a, b, c lập thành CSN. CM ( a + b + c )( a − b + c ) = a 2 + b 2 + c 2 Áp dụng: Tìm 3 số liên tiếp của một CSN biết tổng của chúng là 14 và tổng các bình phương của chúng là 84. Tiết 58: Kiểm tra viết Chương 3 Phần A: TNKQ u1 = 1  Câu 2: cho dãy số ( u n ) :  2 u n +1 = u 2 + 1  n+ Số hạng tổng quát của dãy là: 2 n A. u n = n B. u n = 1 C. u n = D. u n = n +1 2 n +1 2 Câu 1: Cho dãy số (un) biết u n = 2 2 . Chọn phương án đúng, số hạng un+1 bằng. A. 2n +1 B. 2n +2 C. 2n.2 D. 2(n+1) Câu 4: Tổng S = 1 + 2 + 3 + ..... + 100 có giá trị bằng A. 5050 B. 10100 C. 5000 D. Kết quả khác Câu 3: Cho CSC 5;3;1….số hạng tiếp theo là:
  7. A. 2 B. 0 C. -2 D. -1 Câu 5: Trong các dãy sau dãy nào là 1 CSN: A. u n = ( − 5) 2 n +1 2 n +1 B. u n = 3 C. D. Câu 6: CSN un là một dãy tăng có u 3 = 8, u 5 = 32 công bội của CSN bằng: A. 4 B. 2 C. -2 D. Câu 7: 3 số lập thành CSN, tổng của chúng bằng 15 và tổng các bình phương của chúng bằng 107. Công sai d > 0 của CSN đó bằng A.4 B. 5 C. 6 D. 7 Câu 8: 3 số a, b, c (a < b < c) theo thứ tự lập thành 1 CSN, biết tổng của chúng bằng 266 và tích của chúng là 216, công bội của CSN này bằng A. 2 B. 3 C. 4 D. 5 Phần B: Tự luận Bài 1: Tìm số hạng đầu của 1 CSN biết rằng công bội là 3, tổng các số hạng là 728 và số hạng cuối là 486 Bài 2: Chứng minh rằng n5 – n chia hết cho 5. Đáp án: B qn −1 Bài 1: S n = u1 (*) q −1 u n +1 Mặt khác: u n +1 = u1 q n → q n = 1 Vì số hạng cuốia un = 486, q = 3 Suy ra U n +1 = 486.x3 = 1458 n 1458 Vậy q = u1 1458 −1 Thay vào (*) u1 1458 − u1 F28 = u1 = → u1 = 2 3 −1 2
  8. Nguồn maths.vn

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản