Giáo án điện tử môn Xác suất thống kê - Tuần 6

Chia sẻ: | Ngày: | Loại File: PDF | Số trang:51

0
157
lượt xem
60
download

Giáo án điện tử môn Xác suất thống kê - Tuần 6

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo bài viết 'giáo án điện tử môn xác suất thống kê - tuần 6', khoa học xã hội, kinh tế chính trị phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Giáo án điện tử môn Xác suất thống kê - Tuần 6

  1. Tài Liệu Giáo án điện tử môn Xác suất thống kê - Tuần 6
  2. TRẦN AN HẢI   TUẦN 6  HÀ NỘI - 2009
  3. Chương 5 ƯỚC LƯỢNG THAM SỐ _________________________________________________ §1 ĐẶT VẤN ĐỀ Biết chiều dài một sản phẩm do một xưởng sản xuất ra là bnn X . Hãy ước lượng giá trị của .
  4. là một tham số cần ước lượng. Muốn ước lượng nó, ta phải dựa vào mẫu gồm một số sản phẩm do xưởng này sản xuất. Ta có thể ước đoán bởi một giá trị hoặc ước đoán thuộc khoảng (a; b) nào đấy. Trong thống kê, gọi là ước lượng điểm của , còn (a; b) là ước lượng khoảng của .
  5. §2 ƯỚC LƯỢNG ĐIỂM Giả sử bnn X đã biết được dạng của quy luật ppxs nhưng chưa biết tham số nào đó. Ta ước đoán bởi một con số * như sau: Ta xây dựng hàm của mẫu ngẫu nhiên tổng quát là . Với mỗi mẫu ngẫu nhiên cụ thể (x1, x2, …, xn), ta lấy làm ước lượng cho .
  6. Gọi hay là ước lượng điểm của . Để đánh giá chất lượng * xem “tốt” hay không ta không thể mong muốn nó thật gần bởi vì ta chưa biết . Vì vậy, dưới đây người ta đưa ra các tiêu chuẩn để dựa vào đó kết luận về chất lượng của *.
  7.  Ước lượng không chệch (ưlkc) Gọi là ước lượng không chệch của , nếu = . Ngược lại, nếu thì gọi là ước lượng chệch của .
  8.  Ước lượng hiệu quả (ưlhq) Gọi là ước lượng hiệu quả của , nếu nó là ưlkc của và nhỏ nhất so với phương sai của mọi ưlkc khác của .
  9.  Ước lượng vững (ưlv) Gọi là ước lượng vững của , nếu Ý nghĩa của công thức này Hầu như chắc chắn sai khác không nhiều miễn là n đủ lớn.
  10. Các kết quả về ước lượng điểm là ưlkc, ưlhq, ưlv của E(X). , là ưlkc, ưlv của D(X). là ưlkc, ưlhq, ưlv của P(A). , là ước lượng chệch của D(X).
  11. §3 ƯỚC LƯỢNG KHOẢNG Phương pháp ước lượng điểm có nhược điểm là khi kích thước mẫu nhỏ thì ước lượng điểm tìm được có thể sai lệch rất nhiều so với tham số cần ước lượng. Ngoài ra không thể đánh giá được khả năng mắc sai lầm khi ước lượng. Để khắc phục các nhược điểm này, ta thường dùng phương pháp ước lượng bằng khoảng tin cậy.
  12. Giả sử bnn X đã biết được dạng của quy luật ppxs nhưng chưa biết tham số nào đó. Ta đi tìm một khoảng để nó chứa với xác suất bằng như sau: Ta xây dựng như là các hàm của mẫu ngẫu nhiên tổng quát và . sao cho .
  13. Khi ấy ta gọi . là ước lượng khoảng (hay khoảng tin cậy của ), còn là độ tin cậy của ước lượng này. Số đo khả năng để rơi vào khoảng này, nên người ta thường chọn nó gần 1.
  14. Chú ý Với một mẫu ngẫu nhiên cụ thể (x1, x2, …, xn), ta cũng gọi là ước lượng khoảng (hay khoảng tin cậy) của .
  15. I – Tìm khoảng tin cậy cho kì vọng a) Trường hợp X Nếu đã biết, ta dùng công thức trong đó n = kích thước mẫu, còn không âm thỏa , , .
  16. Như vậy, khoảng tin cậy của E(X) với độ tin cậy là Đặc biệt:  Nếu chọn , thì ta có khoảng tin cậy đối xứng là .
  17.  Nếu chọn , thì ta có khoảng tin cậy bên phải là .  Nếu chọn , thì ta có khoảng tin cậy bên trái là .
  18. Ví dụ Khối lượng của một loại sản phẩm là bnn tuân theo luật phân phối chuẩn với độ lệch tiêu chuẩn là 1g. Cân 25 sản phẩm loại này ta thu được kết quả sau Khối lượng (g) 18 19 20 21 Số sản phẩm 3 5 15 2 Hãy tìm khoảng tin cậy đối xứng của khối lượng trung bình với độ tin cậy 0,95.
  19. Giải Với 0,95, ta có . , . Vì vậy, khoảng tin cậy đối xứng của khối lượng trung bình là 
  20. Nếu chưa biết, ta dùng công thức trong đó n = kích thước mẫu, và không âm thỏa , còn tra từ Bảng giá trị hàm Student.
Đồng bộ tài khoản