Kĩ thuật biến đổi tương tự – số ADC

Chia sẻ: Tan Lang | Ngày: | Loại File: PDF | Số trang:16

0
270
lượt xem
115
download

Kĩ thuật biến đổi tương tự – số ADC

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'kĩ thuật biến đổi tương tự – số adc', kỹ thuật - công nghệ, điện - điện tử phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Kĩ thuật biến đổi tương tự – số ADC

  1. Kĩ thuật biến đổi tương tự – số ADC MỞ ĐẦU Trong ba thập kỷ qua, kỹ thuật xử lý thông tin đã phát triển mạnh. Hệ thống truyền tin được tổ chức theo các lớp chức năng: định dạng và mã hoá nguồn tin, điều chế, mã hoá kênh, ghép kênh và đa truy nhập, trải phổ tần số, mật mã hoá và đồng bộ. Hiện nay, các mạch số, chuyển mạch, hệ thống truyền dẫn, và các thiết bị lưu trữ là một trong những lĩnh vực phát triển mạnh mẽ nhất trong công nghệ điện tử. Do cáp quang có băng tần hầu như không giới hạn nên hệ thống viễn thông số đang chuyển biến dần ngành công nghiệp điện thoại và tạo nên sự hội tụ nhanh chóng của thông tin thoại, số liệu và thông tin hình ảnh (video). Việc truyền dẫn tín hiệu truyền thông hầu hết được thực hiện theo phương pháp số. Trong khi đó tín hiệu tự nhiên (thoại, số liệu, hình ảnh,...) lại biến thiên liên tục theo thời gian, nghĩa là tín hiệu tự nhiên có dạng tương tự. Để phối ghép giữa nguồn tín hiệu tượng tự và các hệ thống xử lý số, người ta dùng các mạch chuyển đổi tương tự-số (ADC: Analog Digital Converter) và ngược lại là chuyển đổi số-tương tự (DAC: Digital Analog Conver). Bài viết này sẽ trình bày lý thuyết tổng quan và phân tích các kĩ thuật biến đổi đồng thời đánh giá sai số trong biến đổi tương tự - số ADC. I. Tổng quan về biến đổi tương tự-số (ADC) Biến đổi tương tự - số ADC là biến đổi điện áp vào (giá trị tương tự) thành các số (giá trị số) tỷ lệ với nó. Về nguyên tắc có ba phương pháp biến đối tương tự–số khác nhau như sau: phương pháp song song, phương pháp trọng số và phương pháp số. Sau đây sẽ xem xét nguyên tắc làm việc của bộ biến đổi tương tự – số (ADC): ADC UA UM UD Mạch lấy Lượng tử Mã hoá mẫu hoá Hình 1. Sơ đồ khối bộ biến đổi tương tự - số ADC Nguyên tắc: Tín hiệu tương tự được đưa đến một mạch lấy mẫu, tín hiệu ra mạch lấy mẫu Q được đưa đến mạch lượng tử hoá làm tròn với độ chính xác: ± . 2 -2-
  2. Kĩ thuật biến đổi tương tự – số ADC Sau mạch lượng tử hoá là mạch mã hoá. Trong mạch mã hoá, kết quả lượng tử hoá được sắp xếp lại theo một quy luật nhất định phụ thuộc vào loại mã yêu cấu trên đầu ra bộ chuyển đổi. Trong nhiều loại ADC, quá trình lượng tử hoá và mã hoá xảy ra đồng thời, lúc đó không thể tách rời hai quá trình đó. Sau đây sẽ xem xét cụ thể nhiệm vụ cơ bản của các khối chức năng trong sơ đồ khối trình bày như hình vẽ số 1: Mạch lấy mẫu có nhiệm vụ: - Lấy mẫu tín hiệu tương tự tại những thời điểm khác nhau tức là rời rạc hoá tín hiệu về mặt thời gian. - Giữ cho biên độ điện áp tại các thời điểm lấy mẫu không đổi trong quá trình chuyển đối tiếp theo (quá trình lượng tử hoá và mã hoá). (hình 2) Mạch lượng tử hoá làm nhiệm vụ rời rạc hoá tín hiệu tương tự về mặt biên độ. Như vậy, nhờ quá trình lượng tử hoá, một tín hiệu tương tự bất kỳ được biểu diễn bởi một số nguyên lần mức lượng tử. Tức là: X Ai X Ai ΔX Ai Z Di = int = − Q Q Q Ghi chú: XAi: tín hiệu tương tự ở thời điểm i. ZDi: tín hiệu số ở thời điểm i. Q: mức lượng tử. ΔXAi: số dư trong phép lượng tử hoá int (integer): phần nguyên. UA UM t t -3-
  3. Kĩ thuật biến đổi tương tự – số ADC Hình 2: Đồ thị thời gian của điện áp vào và điện áp ra mạch lấy mẫu II. Các phương pháp biến đổi tương tự – số (ADC) Như trên đã trình bày, có 3 phương pháp biến đổi ADC cơ bản là: phương pháp song song, phương pháp trọng số và phương pháp số. Sau đây sẽ xem xét chi tiết kĩ thuật từng phương pháp. 2.1. Phương pháp song song Xét một bộ biến đổi 3 bit thực hiện theo phương pháp song song như hình 3. Với 3 bít có thể biểu diễn 23=8 số khác nhau, kể cả số 0 (không). Do đó cần có 7 bộ so sánh, 7 điện áp chuẩn từng nấc được tạo ra bởi các phân áp. Nếu điện áp vào không vượt ra khỏi giới hạn dải từ 5/2 ULSB đến 7/2 ULSB thì các bộ sao sánh từ thứ 1 đến thứ 3 xác lập ở trạng thái “1”, còn các bộ so sánh từ thứ 4 đến thứ 7 xác lập ở trạng thái “0”. Các mạch logic cần thiết để diễn đạt trạng thái này thành số 3. Bảng 5 cho quan hệ giữa các trạng thái của các bộ so sánh với các số nhị phân tương ứng. Nếu điện áp vào bị thay đổi đi có thể sẽ nhận được kết quả sai do đó bộ mã hoá ưu tiên không thể đấu trực tiếp đến các lối ra của các bộ so sánh. Ta hãy xét đến chẳng hạn việc chuyển từ số 3 sang số 4 (do đó, trong mã nhị phân là từ 011 đến 100). Nếu bit già do thời gian trễ sẽ giảm đi mà thay đổi trạng thái của mình sớm hơn các bít khác thì sẽ xuất hiện số 111, tức là số 7. Trị số sai tương ứng với một nửa dải đo. Bởi vì các kết quả biến đổi A/D, như đã biết, được ghi vào bộ nhớ, như vậy là tồn tại một xác xuất nhất định để nhận được một trị số hoàn toàn sai. Có thể giải quyết vấn đề này bằng cách, chẳng hạn, dùng một bộ nhớ - trích mẫu để ngăn sự biến động điện áp vào trong thời gian đo. Tuy nhiên, phương pháp này đã hạn chế tần số cho phép của điện áp vào, bởi vì cần phải có thời gian xác lập cho mạch nhớ - trích mẫu. Ngoài ra không thể loại bỏ hoàn toàn xác xuất thay đổi trạng thái ra của các bộ so sánh, bởi vì các mạch nhớ - trích mẫu hoạt động nhanh có độ trôi đáng kể. -4-
  4. Kĩ thuật biến đổi tương tự – số ADC ULSB U chuẩn 1/2R K7 X7 + 13 D Q U LSB - C Ue 2 R K6 X6 11 + U LSB D Q 2 - C R + K5 X5 Bộ 9 D Q 2 U LSB - C mã Z2 R K4 X4 hoá 7 + D Q ưu Z1 U LSB 2 - C tiên R K3 X3 Z0 + 5 D Q U LSB - C 2 R 3 X2 2 U LSB K2 3 + D Q U LSB - C 2 R K1 X1 1 + D Q U LSB - C 2 1/2R Hình 3: Bộ biến đổi A/D làm việc theo phương pháp song song Ue Ue Z= =7 U LSB U chuan Nhược điểm này có thể được khắc phục bằng cách sau mỗi bộ so sánh, ta dùng một trigơ với tư cách là một bộ nhớ đệm lật theo sườn để nhớ các trị analog. Trigơ này, dưới tác dụng của tín hiệu nhịp sẽ khởi động cho các trigơ tiếp sau. Ở trường hợp này bảo đảm giữ nguyên trạng thái dừng trên lối ra bộ mã hoá ưu tiên khi tác động sườn xung để khởi động trigơ. Như đã thấy rõ ở bảng 1, các bộ so sánh xác lập ở trạng thái “1” theo trình tự từ dưới lên trên. Trình tự này sẽ không được đảm bảo nếu các sườn xung là dựng đứng. Bởi vì do có sự khác nhau về thời gian trễ của các bộ so sánh nên có thể sẽ chuyển sang một trình khác. Trong các tình huống xác định, trạng thái quá độ này có thể được ghi vào các trigơ như là khi sườn xung khởi động trigơ và sườn tín hiệu -5-
  5. Kĩ thuật biến đổi tương tự – số ADC trùng nhau. Tuy nhiên, bộ mã hoá ưu tiên đã cho phép tránh được điều này nhờ tính chất là: nó không chú ý đến các bít trẻ “1” . Bảng 1: Sự biến đổi trạng thái trong bộ biến đổi A/D song song tuỳ thuộc vào điện áp lối vào. Số thập phân Điện áp vào Trạng thái của các bộ so sánh Số nhị phân tương ứng Ue/ULSB K7 K6 K5 K4 K3 K2 K1 Z2 Z1 Z0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 2 0 0 0 0 0 1 1 0 1 0 2 3 0 0 0 0 1 1 1 0 1 1 3 4 0 0 0 1 1 1 1 1 0 0 4 5 0 0 1 1 1 1 1 1 0 1 5 6 0 1 1 1 1 1 1 1 1 0 6 7 1 1 1 1 1 1 1 1 1 1 7 Thời gian lấy mẫu cần phải nhỏ hơn thời gian trễ của bộ so sánh, còn điểm bắt đầu của nó được xác định bởi sườn xung khởi động. Sự khác nhau về thời gian trễ đã gây ra độ bất định thời gian(khe) của mẫu. Để giảm nhỏ trị số của nó đến mức đã tính toán trong mục trước, tốt nhất là sử dụng các bộ so sánh có khả năng giảm nhỏ thời gian trễ. Nhờ các tầng làm việc song song nên phương pháp biến đổi A/D vừa mô tả là nhanh nhất. 2.2. Phương pháp song song cải biến Điểm hạn chế của phương pháp song song là: Số lượng các bộ so sánh tăng lên theo hàm mũ với độ dài của từ. Chẳng hạn, đối với bộ biến đổi 8 bit, cần đến 255 bộ so sánh. Có thể giảm đáng kể giá thành nếu giảm nhỏ tốc độ biến đổi. Muốn vậy người ta tổ hợp phương pháp song song với phương pháp trọng số. Khi xây dựng bộ biến đổi 7 bit theo phương pháp cải biến ở bước thứ nhất 4 bit già của mã được biến đổi song song (hình 4). Sau bước này ta thu được giá trị lượng tử thô của điện áp vào. Nhờ một bộ biến đổi D/A ta sẽ có một điện áp analog tương ứng. Điện áp vào được đem trừ đi điện áp này. Phần dư còn lại sẽ được biểu diễn dưới sạng số nhờ một bộ biến đổi A/D 4 bit thứ hai. Nếu hiệu số giữa giá trị xấp xỉ thô và điện áp vào được khuếch đại lên 16 lần thì có thể sử dụng 2 bộ biến đổi A/D với cùng một dải điện áp vào. Tất nhiên là sự khác nhau giữa 2 bộ biến đổi sẽ được quy về các yêu cầu của độ chính xác ở bộ biến -6-
  6. Kĩ thuật biến đổi tương tự – số ADC đổi A/D thứ nhất, độ chính xác hầu như phải đạt như một bộ biến đổi 8 bit. Bởi vì nếu không thì hiệu số nhận được sẽ không có ý nghĩa. Các trị số xấp xỉ thô và chính xác ở lối ra tất nhiên phải là tương ứng với cùng một điện áp Ue(tj). Tuy nhiên có trễ tín hiệu ở bậc thềm thứ nhất nên sẽ xuất hiện thời gian trễ, vì thế, khi sử dụng phương pháp này, điện áp sẽ được giữ không đổi (nhờ một bộ nhớ - trích mẫu) cho đến khi nhận được toàn bộ số. Bộ Bộ biến Bộ biến đổi biến - + đổi Bộ nhớ đổi A/D + A/D trích mẫu D/A song song song 4 bit song 4 bit 4 bit U U 1/16U chuẩn chuẩn chuẩn Z7Z6Z5Z4 Z3 Z2 Z1 Z0 Hình 4: Bộ biến đổi A/D thực hiện theo phương pháp song song cải biến. Ue Ue Z= = 255 U LSB U chuan -7-
  7. Kĩ thuật biến đổi tương tự – số ADC 2.3. Phương pháp trọng số Sơ đồ khối của một bộ biến đổi A/D làm việc theo phương pháp trọng số được minh hoạ trong hình vẽ số 5. Phần tử nhớ trích mẫu + K Phần tử điều Bộ Ue - khiển tạo Bộ so sánh nhịp U(z) Bộ Z biến Bộ nhớ đổi D/A Z7Z6Z5Z4Z3Z2Z1Z0 U chuẩn Hình 5: Bộ biến đổi A/D làm việc theo phương pháp trọng số Z=Ue/USLB Trước khi bắt đầu do đơn vị logic điều khiển (thí dụ như máy vi tính) ghi vào bộ nhớ các giá trị không (xoá hết thông tin trong bộ nhớ). Ngay sau đó xác lập giá trị “1” cho bit già, ở đây Z7 =1. Nhờ đó, điện áp trên lối ra bộ biến đổi D/A bằng: U(Z) = 27 ULSB Giá trị này chính là một nửa dải có thể của tín hiệu tạo ra. Nếu điện áp vào Ue lớn hơn trị số này thì phải có Z7 = 1. Nếu nhỏ hơn thì Z7=0. Do đó đơn vị điều khiển cần phải chuyển Z7 ngược về trạng thái 0. Nếu biến ra K của bộ so sánh nhận giá trị 0. Ngay sau đó, số dư Ue - Z7.2. ULSB cũng được so sánh như vậy với các bit trẻ gần nhất. Sau 8 bước so sánh tương tự, số nhị phân Z được ghi trong bộ nhớ. Sau phép biến đổi A/D ta có điện áp tương ứng bằng: Ue = Z ULSB Do đó Z = Ue/ULSB -8-
  8. Kĩ thuật biến đổi tương tự – số ADC Nếu trong thời gian biến đổi mà điện áp bị biến đổi đi thì cần phải có một phần tử nhớ - trích mẫu để nhớ trung gian các giá trị của hàm, nhằm đảm bảo để tất cả các bit được biến đổi ra từ cùng một giá trị điện áp vào như nhau. 2.4. Phương pháp số Trong phương pháp số, người ta sử dụng các phương tiện đơn giản và đạt được độ chính xác cao nên các bộ biến đổi A/D thực hiện theo phương pháp này có giá thành rất thấp. Tuy nhiên thời gian biến đổi lớn hơn nhiều so với các phương pháp khác. Như đã biết, nó vào khoảng 1- 100msec. Trong nhiều ứng dụng, giá trị này là chấp nhận được. Vì vậy mà phương pháp số được sử dụng rộng rãi nhất trong đa số các phương án mạch. Những vấn đề quan trọng nhất của chúng sẽ được khảo sát dưới đây. 2.4.1. Phương pháp bù Bộ biến đổi A/D kiểu bù vẽ ở hình (6) rất giống với các sơ đồ đã khảo sát trước đây. Điểm khác biệt là ở chỗ: ở đây bộ nhớ được thay đổi bởi bộ đếm. Lúc này có thể đơn giản đáng kể đơn vị điều khiển. Ue - U(Z) + Bộ chuyển đổi hướng đếm U(Z) Bộ biến đổi Bộ đếm thuận Bộ tạo D/A nghịch nhịp U chuẩn Z7Z6Z5Z4Z3Z2Z1Z0 Hình 6. Bộ biến đổi A/D theo phương pháp bù Nhờ có bộ trừ mà điện áp vào Ue được so sánh với điện áp bù U(z). Nếu hiệu 1 số Ue − U Z > U LSB thì bộ đếm làm việc trong chế độ cộng. Nhờ vậy mà U(z) 2 1 tiến sát đến điện áp vào. Nếu Ue − U Z < U LSB thì bộ đếm là một bộ trừ. Lúc 2 đó điện áp bù luôn luôn bám theo điện vào. Vì lý do trên mà loại mạch như thế được gọi là các bộ biến đổi A/D kiểu bám. -9-
  9. Kĩ thuật biến đổi tương tự – số ADC Để ngăn ngừa sự làm việc tiếp tục của bộ đếm đến khi đạt được sự san bằng 1 trong bit tiếp sau, bộ đếm sẽ tạm ngừng nếu hiệu số Ue-U(z) nhỏ hơn U LSB 2 Khác với phương pháp trọng số, ở đây các số trên lối ra có thể biểu diễn đủ đơn giản dưới dạng nhị thập phân. Muốn vậy, thay cho bộ đếm nhị phân, người ta dùng bộ đếm nhị - thập phân. Việc đơn giản đơn vị điều khiển so với phương pháp trọng số sẽ đạt được bằng cách giảm nhỏ tốc độ biến đổi, bởi vì điện áp bù được thay đổi bởi các thềm ULSB. Ở trường hợp điện áp vào thay đổi chậm thì vẫn có thể nhận được thời gian động tác nhỏ bởi vì nhờ tính chất bám, sự xấp xỉ mang tính liên tục mà không bắt đầu từ “không” như trong phương pháp tính trọng số. 2.4.2. Phương pháp điện áp răng cưa: Nguyên lý làm việc của phương pháp này trước hết dựa trên việc biểu diễn điện áp răng cưa và các bộ so sánh K1, K2 (hình 7). + Ue - K1 Bộ - đếm VS + K2 f Z Bộ tạo điện Bộ tạo sóng Bộ chỉ áp răng cưa thạch anh thị U tf chuẩn Z= Ue U chuan Hình 7: Bộ biến đổi A/D làm việc theo phương pháp răng cưa. Điện áp răng cưa tăng từ giá trị âm đến giá trị dương theo luật: U chuan VS = t − Vo τ Lối ra của phần tử logic XOR giữ ở trạng thái “1” cho đến khi điện áp răng cưa còn nằm trong dải từ 0 đến Ue. Thời gian tương ứng với quá trình đó bằng: τ Δt = Ue U chuan - 10 -
  10. Kĩ thuật biến đổi tương tự – số ADC Để xác định nó, người ta đếm số dao động được tạo ra bởi một bộ tạo sóng thạch anh. Nếu trước lúc tiến hành phép đo ta lập bộ đếm ở trạng thái “0” thì khi vượt qua ngưỡng trên của bộ so sánh, trong bộ đếm sẽ có mã: Δt τf Z= = Ue T U chuan Nếu trên lối vào có điện áp âm thì thoạt tiên điện áp răng cưa đạt giá trị của điện áp vào rồi sau đó đi qua giá trị 0. Theo trình tự này có thể xác định được dấu của điện áp đo. Độ dải đo cũng giống như trong trường hợp tín hiệu dương, nó chỉ phụ thuộc vào biên độ của điện áp đo. Sau mỗi lần đo bộ đếm lại lặp về “0” và điện áp răng cưa lại có giá trị âm ban đầu, để đảm bảo cho việc đưa ra các số liệu ổn định thì kết quả dưới dạng số trước đó thường được nhớ trong khi tạo số mới. Khi san bằng liên tục bằng phương pháp bù thì điều này là không cần thiết vì rằng sau khi san bằng trạng thái biến đổi của bộ đếm không thay đổi nếu Ue giữ nguyên. Như thấy từ công thức trên, sự tản mát của hằng số thời gian τ trực tiếp ảnh hưởng đế độ chính xác của phép đo. Bởi vì độ chính xác được xác định bởi mạch RC, cho nên độ trôi thời gian và nhiệt độ của tụ điện cũng ảnh hưởng đến nó. Vì các nguyên nhân này mà độ chính xác khó vượt qua 0,1% 2.4.3. Phương pháp tích phân kép: Phương pháp đo thứ hai khi đó không chỉ điện áp chuẩn, mà cả điện áp cũng được lấy tích phân minh hoạ ở hình 8. Ở trạng thái rỗi, các khoá S1 và S2 hở mạch còn khoá S3 kín mạch. Điện áp ra khỏi bộ tích phân bằng không. Khi bắt đầu đo: Khoá S3 hở mạch ra còn khoá S1 kín mạch lại. Vì vậy điện áp vào được lấy tích phân. Thời gian lấy tích phân điện áp vào là cố định. Bộ thời gian đóng vai trò một bộ định giờ (timer). Cho đến khi lấy phép tích phân thực (t1), điện áp ra khỏi bộ tích phân bằng: 1 t1 Uen1T U 1 (t1 ) = − ∫ Uedt = − τ 0 τ ở đây: n1 là số xung nhịp xác định bởi bộ đếm thời gian tích phân; T là kỳ của bộ tạo nhịp. - 11 -
  11. Kĩ thuật biến đổi tương tự – số ADC bộ tích phân S3 bộ so sánh S1 C1 - Thiết bị điều + khiển - Ue + t2 t1 S2 U1 Bộ đếm thời - gian tích phân U chuẩn + Bộ tạo Bộ đếm nhịp kết quả Ue Bộ chỉ Z= n1 U chuan thị Hình 8. Bộ biến đổi A/D thực hiện bằng phương pháp tích phân kép. U1 t1 t2 t Tích phân Ue Tích phân Uchuẩn Hình 9: Đường thời gian của điện áp ra khỏi bộ tích phân đối với các điện áp khác nhau Sau khi kết thúc phép đo, để xác định các giá trị số thì khoá S1 hở mạch ra, điện áp chuẩn được đặt tới bộ tích phân qua khoá S2. Khi đó điện áp chuẩn sau khi chọn được ngược dấu với điện áp vào. Như vậy, điện áp ra lại giảm đi như mô ta trên hình (11). Khoảng thời gian lại đó điện áp ra trở nên bằng không được xác định nhờ bộ so sánh và bộ đếm kết quả. τ t 2 = n 2T = U 1 (t1 ) U chuan ta có kết quả: Ue Z = n2 = n1 U chuan - 12 -
  12. Kĩ thuật biến đổi tương tự – số ADC Từ công thức trên ta thấy rằng: Đặc điểm nổi bật của phương pháp này là tần số nhịp 1/T và hằng số tích phân τ = RC1 không hề ảnh hưởng đến kết quả. Chỉ yêu cầu làm sao để trong khoảng thời gian t1+t2, tần số nhịp không đổi. Điều này có thể đảm bảo ngay cả khi dùng các bộ tạo nhịp đơn giản, từ đây hiển nhiên là bằng phương pháp này dễ dàng đạt đến độ chính xác 0,01%. Khi đưa ra các biểu thức ở trên ta thấy rằng trong kết quả cuối cùng không có các giá trị tức thời của điện áp đo, mà chỉ có các giá trị trung bình trong thời gian đo t1. Vì vậy điện áp càng giảm khi tần số của nó càng cao. Điện áp biến thiên có tần số bằng bội số nguyên của 1/t1 bị suy giảm hoàn toàn. Vì thế tần số của bộ tạo nhịp được chọn một cách hợp lý sao cho trị số t1 hoặc là bằng chu kỳ dao động của điện áp lưới, hoặc là bằng bội số của nó. Trong trường hợp này tất cả các tác động của điện lưới sẽ bị loại trừ. Do có phương pháp tích phân kép mà bằng những giải pháp đơn giản để có thể đảm bảo được độ chính xác cho và triệt được nhiễu cho nên người ta sử dụng nó trong các vôn mét số. Thời gian biểu diễn tương đối lớn cũng không cản trở đến các ứng dụng như vậy. 2.4.4. Hiệu chỉnh tự động điểm không: Trong phương pháp tích phân kép chúng ta thấy rằng: hằng số thời gian τ=RC1 và tần số nhịp f=1/T không ảnh hưởng gì đến kết quả. Do đó độ chính xác, trong một mức độ rất lớn, được quyết định bởi sự biến động giá trị của điện áp chuẩn và của độ xê dịch điểm không của bộ tích phân và bộ so sánh. Có thể khắc phục hiện tượng dịch chuyển điểm không bằng cách hiệu chỉnh tự động. Muốn vậy, khoá S3 thường kín mạch (hình 8) được thay đổi bởi một mạch điều chỉnh như vẽ trên hình 10. Nhờ mạch này mà bộ tích phân được lập ở trạng thái cần thiết ban đầu. Ở trạng thái nghỉ, khoá S3 kín mạch. Vì vậy bộ tích phân và bộ tiền khuếch đại trên lối vào bộ so sánh tạo thành một bộ lặp điện áp. Điện áp ra UK của nó đặt lên tụ CN. Để hiệu chỉnh không người ta kín mạch khoá S4 lại và trên lối vào bộ tích phân có điện áp không. Kết quả là UK được bổ sung thêm một lượng hiệu chỉnh bằng U01 - IBR. Ở đây, Uo1 là điện áp dịch của bộ tích phân, còn IB là dòng vào tĩnh. Ở trạng thái xác lập, nhờ có bù mà dòng qua C1 (như trong bộ tích phân lý tưởng) bằng không. Khi lấy tích phân điện áp vào, các khoá S3 và S4 hở mạch ra còn S1 được kín mạch lại. Bởi vì trong khoảng thời gian này điện áp UK trên tụ CN được nhớ, cho nên - 13 -
  13. Kĩ thuật biến đổi tương tự – số ADC vị trí không trong pha lấy tích phân được hiệu chỉnh. Lúc đó trên độ trôi điểm không được quyết định chỉ bởi mất độ ổn định tức thời. Bộ tích phân Bộ khuyếch đại Ue CI Bộ so sánh R - - Đến thiết bị - + + điều khiển + - UI U chuẩn + S3 UK C Hình 10: Phương pháp tích phân kép có hiệu chỉnh tự động điểm không Sai số dịch trong bộ so sánh cũng có thể được hiệu chỉnh ở một mức độ đáng kể. Ở trạng thái nghỉ, điện áp ra bộ tích phân U1 được lập không phải ở không như trong các mạch khảo sát trước đây, mà dịch đi một điện áp bằng thiên áp của tiền khuếch đại, tức là ngay sát điện áp ngưỡng của bộ chuyển mạch. Bởi vì trong vòng bù có 2 bộ khuếch đại liên tiếp, cho nên rất dễ xuất hiện kích. Để ổn định, có thể dấu một điện trở nối tiếp với tụ CN. Ngoài ra, hệ số khuếch đại của bộ tiền khuếch đại được hạn chế một cách hợp lý ở mức dưới 100. Nhờ vậy mà việc nhận được một thời gian trễ nhỏ (điều này cần thiết cho hoạt động của so sánh) cũng đơn giản hơn. Các bộ biến đổi A/D kiểu tích phân được chế tạo dưới dạng các mạch CMOS đơn khối. Có thể chia chúng thành 2 nhóm chính: loại có lối ra song song để dùng chung (đặc biệt để xử lý lại số liệu kết hợp với máy vi tính) và loại có các lối ra dồn kênh nhị - thập phân dùng để điều khiển các bộ chỉ thị. III. Sai số trong biến đổi tương tự – số (ADC) 3.1. Sai số tĩnh Khi biến đổi các giá trị tương tự (Analog) thành số (Digital) với số bit UA(z) hữu hạn thường xuất hiện sai số hệ thống. Các sai số này gọi là sai số UE lượng tử. Theo minh hoạ ở hình 1 nó +1/2ULSB -1/2ULSB UZ - 14 - Hình 11. Sự xuất hiện của tạp âm lượng
  14. Kĩ thuật biến đổi tương tự – số ADC vào khoảng ±1/2ULSB tức là có trị số bằng một nửa sai số của điện áp vào cần thiết để làm thay đổi mã trong các bit trẻ. Nếu bằng một bộ biến đổi D/A ta biến đổi ngược số nhận được thành điện áp thì sẽ phát hiện sai số lượng tử dưới dạng tạp âm. Bên cạnh sai số hệ thống do lượng tử hoá còn có sai số đáng kể do mạch gây ra. Nếu các điểm giữa của các bậc trên đường gấp khúc lý tưởng ở hình 11 được nối liền với nhau thì ta có một đường thẳng với một hệ số góc duy nhất xuất phát từ gốc toạ độ. Trong các bộ biến đổi A/D thực tế đường thẳng này không xuất phát từ điểm 0 (sai số dịch) và độ nghiêng của nó khác 1 (sai số khuếch đại). Sai số khuếch đại trong dải biến đổi tín hiệu là nguyên nhân gây ra độ lệch hằng số tương đối giữa trị số gia và trị số nguyên thuỷ. Ngược lại, sai số dịch lại tạo ra sai số hằng số tuyệt đối. Sai số hệ thống do lượng tử hoá có thể dẫn tới tình trạng phi tuyến tính của đặc tuyến trong trường hợp các bậc không đều nhau. Khi xác định các sai số tuyến tính người ta hiệu chỉnh các vị trí 0 và hiệu chỉnh độ khuếch đại rồi phát hiện độ lệch lớn nhất giữa điện áp vào và đường thẳng lý tưởng. Trị số này sau khi giảm đi sai số lượng tử bằng 1/2ULSB thí chính là tổng các sai số phi tuyến. 3.2. Sai số động: Trong các Vôn kế số, xuất phát từ hiện tượng là: trong suốt thời gian biến đổi thì điện áp vào là không đổi. Khi xử lý tín hiệu, ngược lại điện áp vào lại liên tục biến đổi. Trong xử lý số, qua các khoảng thời gian bằng nhau ta tiến hành lấy mẫu điện áp biến động ở lối vào bằng các phần tử nhớ-trích mẫu. Các số liệu này được biến đổi thành dạng số nhờ bộ biến đổi A/D. Dãy số tương ứng chỉ mô tả đủ chính xác tín hiệu liên tục ở lối vào khi thoả mãn định lý về rời rạc hoá: tần số lấy mẫu fA ít nhất phải lớn hơn 2 lần tần số lớn nhất của tín hiệu fMAX. Vì thế thời gian biến đổi của bộ biến đổi A/D cần phải nhỏ hơn 1/2 fMAX . Trong phạm vi ứng dụng này, để đánh giá độ chính xác thì các tham số của bộ biến đổi A/D và phần tử nhớ-trích mẫu phải được khảo sát kết hợp. Thí dụ, sẽ không có ý nghã sử dụng bộ biến đổi A/D 12 bit mà phần tử nhớ-trích mẫu sau thời gian tác động không tăng trưởng đến trị số bằng 1/212 ≈ 0,025% dải đo. Một sai số động khác gây ra bởi độ bất định thời gian (khe) ΔtA của điểm lấy mẫu kéo theo độ bất định của giá trị Δ U của điện áp mẫu (hình 12). Thời gian của khe chỉ tạo ra một độ trễ cố định. Khi tính toán sai số cực đại ta giả thiết rằng tín - 15 -
  15. Kĩ thuật biến đổi tương tự – số ADC hiệu vào là hình sin có tần số bằng tần số cực đại cho phép fMAX. Độ nghiêng lớn dU ˆ nhất của đường xuất hiện vào lúc đi qua không. = Uω max dt t =0 Từ đó ta có các số biên độ: ˆ ΔU = Uω max Δt A Nếu nó cần phải nhỏ hơn trị số của mức lượng tử ULSB của bộ biến đổi A/D thì điều kiện thời gian của khe có dạng: U LSB U LSB Δt A < = ˆ Uω max 1 U ω max max 2 ở các tần số cao của tín hiệu rất khó thoả mãn điều kiện này. Thí dụ hằng số sau đay sẽ nhận điều đó: đối với bộ biến đổi 8 bit thì ULSB/UMAX=1/255. Nếu tần số cực đại của tín hiệu bằng 100Mhz thì thời gian bất định nhỏ hơn 125 psec. Ue ˆ Ue ΔU t ΔtA Hình 12: Hiệu ứng khe 3.3. Sai số bù, sai số tăng ích và sai số tuyến tính Sai số bù và tăng ích trong ADC giống như sai số bù và tăng ích trong bộ khuếch đại. Nếu một ADC có sai số bù thì sẽ có một sự dịch chuyển hệ thống trong giá trị của điện áp ngưỡng T(k) từ giá trị bình thường. T(k) là mức ngưỡng giữa các mã. Có khả năng xác định được sai số bù từ phép đo điện áp ngưỡng đơn tại điểm giữa của khoảng chuyển đổi. Nhưng nếu phép đo này có sai số tăng ích và sai số phi tuyến, thì thường xác định sai độ bù. Một phương pháp đo rất hay dùng là phương pháp bình phương nhỏ nhất để đặt giá trị ngưỡng T(k) tới giá trị T(k) lý tưởng. Giá trị bù cần thiết để có được sự thích hợp tốt nhất của gía trị thực tế với giá trị lý tưởng là giá trị bù của bộ chuyển đổi. Cũng như vậy, sai số tăng ích là một khoảng của điện áp ngưỡng cao hơn hoặc thấp hơn so với giá trị tuyệt đối. Một cách tương đương, sai số tăng ích tồn tại nếu độ rộng thu của mã trung bình cao hơn hoặc thấp hơn so với giá trị Q bình thường. - 16 -
  16. Kĩ thuật biến đổi tương tự – số ADC Thêm vào đó, sai số tăng ích có thể đạt được bằng cách tạo ra đường thích hợp nhất (trên đồ thị đặc tuyến) của giá trị T(k) với giá trị lý tưởng của nó. Sai số tuyến tính được định nghĩa một cách truyền thống bằng độ phi tuyến tích phân (INL - Integral NonLinearity) và độ phi tuyến vi phân (DNL - Differential NonLinearity). Độ phi tuyến tích phân là sự sai khác của mức ngưỡng T(k) so với giá trị bình thường của nó sau khi đã loại bỏ các sai số bù và tăng ích. Độ phi tuyến vi phân lại đại diện cho sự sai khác của độ rộng nhị phân W(k) so với giá trị Q bình thường, tất nhiên là sau khi đã sửa sai số tăng ích. W(k) là độ rộng mã nhị phân. Sai số INL và DNL thường được biểu diễn bằng đơn vị bit trọng số nhỏ nhất (LSB - Least Significant Bits), với LSB = Q. Sai số phi tuyến tích phân biểu diễn theo LSB có giá trị : T ( k ) - ( k - 1)Q INL( k ) = víi k = 2 tíi 2 n -1 Q trong công thức trên đã bỏ qua sai số bù và sai số tăng ích và T(1) = 0. Tương tự, sai số phi tuyến vi phân theo LSB là W( k ) - Q DNL( k ) = víi k = 1 tíi 2 n -2 Q Rõ ràng là INL và DNL có quan hệ với nhau. Trong thực tế, DNL là vi phân thứ nhất của INL, nghĩa là : DNL(k) = INL(k+1) - INL(k) Hai thông số chất lượng của đặc tuyến ADC liên quan đến INL và ANL là mã ẩn (missing code) và tính đơn điệu (monotonicity). Nếu một ADC có một số mã không bao giờ xuất hiện tại đầu ra, thì bộ chuyển đổi ADC đó được gọi là có mã ẩn. Điều này tương đương với độ rộng nhị phân W(k)=0 tại mã đó và kèm theo một sai số DNL khá lớn. Tính đơn điệu là khi đầu ra của ADC tăng hoặc giảm tuyến tính theo tín hiệu đầu vào. Khi kiểm tra tính đơn điệu của ADC, các ảnh hưởng của nhiễu phải được loại bỏ. - 17 -
Đồng bộ tài khoản