KỸ THUẬT GIẢI BÀI TẬP MŨ - LOGARIT

Chia sẻ: LPT Anh Khoa Nguyễn | Ngày: | Loại File: DOC | Số trang:6

0
200
lượt xem
95
download

KỸ THUẬT GIẢI BÀI TẬP MŨ - LOGARIT

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tham khảo luyện thi đại học - kỹ thuật giải bài tập mũ - logarit rất hay để các bạn ôn tập được tốt hơn.

Chủ đề:
Lưu

Nội dung Text: KỸ THUẬT GIẢI BÀI TẬP MŨ - LOGARIT

  1. www.VNMATH.com Chuyên đề: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit KIẾN THỨC CẦN NHỚ Hàm số mũ I. • y=ax; TXĐ D=R • Bảng biến thiên a>1 0<a<1 −∞ +∞ −∞ +∞ x x 0 0 +∞ +∞ y y 1 1 −∞ −∞ • Đồ thị y y f(x)=3^x f(x)=(1/3)^x 3 3 y=3x 2 2 x 1 y=  1 1  3 x x -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 -1 -1 -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 -9 -9 -10 -10 -11 -11 -12 -12 -13 -13 -14 -14 -15 -15 II. Hàm số lgarit x > 0 • y=logax, ĐK: 0 < a ≠ 1 ; D=(0;+∞ )  • Bảng biến thiên a>1 0<a<1 +∞ +∞ x x 0 0 0 0 +∞ +∞ y y 1 1 −∞ −∞ • Đồ thị y y=3x y f(x)=ln(x)/ln(1/3) f(x)=ln(x)/ln(3) 4 4 y=x 3 y = log 1 x f(x)=(1/3)^x f(x)=3^x 3 f(x)=x f(x)=x 3 2 2 y=log3 x x 1 1 1 y=  x x  3 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 -1 -1 y=x -2 -2 -3 -3 -4 -4 -5 -5 -6 -6 -7 -7 -8 -8 -9 -9 -10 -10 -11 -11 -12 -12 -13 -13 -14 -14 -15 -15 III. Các công thức 1. Công thức lũy thừa: Với a>0, b>0; m, n∈R ta có: an 1 1 − − = a n − m ;( n =a m ; a0=1; a 1= ); anam =an+m; m a a a n an a m   = m; nm nm n nn ( a ) =a ; (ab) =a b ; a n = n am . b b 2. Công thức logarit: logab=c⇔ac=b (0<a≠ 1; b>0) Với 0<a≠ 1, 0<b≠ 1; x, x1, x2>0; α∈R ta có: www.VNMATH.com 1 Thái Thanh Tùng
  2. www.VNMATH.com Chuyên đề: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit x1 loga x 2 = logax1−logax2; loga(x1x2)=logax1+logax2 ; α logax =α ax; a log a x = x ; log log b x 1 1 log aα x = log a x ;(logaax=x); logax= ;(logab= ) α log b a log b a alogbx=xlogba. logba.logax=logbx; IV. Phương trình và bất phương trình mũ−logarit 1. Phương trình mũ−logarit a. Phương trình mũ: Đưa về cùng cơ số +0<a≠1: af(x)=ag(x) (1) ⇔(x)=g(x). f b > 0 + 0<a≠1: af(x)=b ⇔ .  f ( x ) = log a b ⇔ −1)[f(x)−g(x)]=0 Chú ý: Nếu a chứa biến thì (1) (a Đặt ẩn phụ: Ta có thể đặt t=a (t>0), để đưa về một phương trình đại số.. x Lưu ý những cặp số nghịch đảo như: (2 ± 3 ), (7 ±4 3 ),… Nếu trong một phương trình có chứa {a2x;b2x;axbx} ta có thể chia hai vế cho b2x(hoặc a2x) rồi đặt t=(a/b)x (hoặc t=(b/a)x. Phương pháp logarit hóa: af(x)=bg(x)⇔(x).logca=g(x).logcb,với a,b>0; 0<c≠1. f b. Phương trình logarit: Đưa về cùng cơ số: 0 < a ≠ 1 0 < a ≠ 1  [ g ( x ) > 0] . +logaf(x)= logag(x)⇔ f ( x ) > 0  +logaf(x)=g(x)⇔   f ( x) = a g( x)  f ( x) = g ( x)  Đặt ẩn phụ. 2. Bất phương trình mũ−logarit a. Bất phương trình mũ: a > 0 a > 0  af(x)>ag(x) ⇔  af(x)≥ ag(x) ⇔   ; . ( a − 1) [ f ( x ) − g ( x ) ] > 0 ( a − 1) [ f ( x ) − g ( x ) ] ≥ 0 Đặt biệt: af(x)>ag(x)⇔ * Nếu a>1 thì: f(x)>g(x); a ≥a ⇔ f(x)≥g(x). f(x) g(x) ⇔ f(x)< g(x); * Nếu 0<a<1 thì: af(x)>ag(x) af(x)≥ag(x) ⇔ f(x)≤g(x). b. Bất phương trình logarit: 0 < a ≠ 1 0 < a ≠ 1   logaf(x)>logag(x)⇔ f ( x ) > 0, g ( x ) > 0 logaf(x)≥logag(x)⇔ f ( x ) > 0, g ( x ) > 0   ; . ( a − 1) [ f ( x ) − g ( x ) > 0] ( a − 1) [ f ( x ) − g ( x ) ≥ 0]   Đặt biệt:  f ( x) > g ( x) ⇔  + Nếu a>1 thì: logaf(x)>logag(x) ; g( x) > 0  f ( x) < g( x) ⇔  + Nếu 0<a<1 thì: logaf(x)>logag(x) .  f ( x) > 0 * * * www.VNMATH.com 2 Thái Thanh Tùng
  3. www.VNMATH.com Chuyên đề: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH−BẤT PHƯƠNG TRÌNH−HỆ PHƯƠNG TRÌNH MŨ-LOGARIT I. Biến đổi thành tích ( ) − 1 . ( 22 x − 4 ) = 0 . 2 2 2 +x −x −x − 4.2 x − 22 x + 4 = 0 ⇔ 2 x x Ví dụ 1: Giải phương trình: 2 Nhận xét: Mặc dù cùng cơ số 2 nhưng không thể biến đổi để đặt được ẩn phụ do đó ta phải phân tích thành ( ) − 1 . ( 22 x − 4 ) = 0 . Đây là phương trình tích đã biết cách giải. 2 −x x tích: 2 ( ) Ví dụ 2: Giải phương trình: 2 ( log 9 x ) = log3 x.log 3 2 2x + 1 − 1 . Nhận xét: Tương tự như trên ta phải biến đổi phương trình thành tích: ( ) log 3 x − 2 log 3 2 x + 1 − 1  .log 3 x = 0 . Đây là phương trình tích đã biết cách giải.   Tổng quát: Trong nhiều trường hợp cùng cơ số nhưng không thể biến đổi để đặt ẩn phụ đ ược thì ta bi ến đổi thành tích. II. Đặt ẩn phụ-hệ số vẫn chứa ẩn Ví dụ 1: Giải phương trình: 9 x + 2( x − 2)3x + 2 x − 5 = 0 . Đặt t = 3x (*), khi đó ta có: t 2 + 2 ( x − 2 ) t + 2 x − 5 = 0 ⇒ t = −1, t = 5 − 2 x . Thay vào (*) ta tìm được x. Lưu ý: Phương pháp này chỉ sử dụng khi ∆ là số chính phương. Ví dụ 2: Giải phương trình: log 3 ( x + 1) + ( x − 5 ) log 3 ( x + 1) − 2 x + 6 = 0 . Đặt t = log3(x+1), ta có: 2 t 2 + ( x − 5 ) t − 2 x + 6 = 0 ⇒ t = 2, t = 3 − x ⇒ x = 8 và x = 2. III. Phương pháp hàm số Các tính chất: Tính chất 1: Nếu hàm f tăng (hoặc giảm) trên khoảng ( a;b) thì phương trình f(x)=k (k∈R) có không quá một nghiệm trong khoảng (a;b). Tính chất 2: Nếu hàm f tăng (hoặc giảm) trên khoảng (a;b) thì ∀u, v ∈(a,b) ta có f (u ) = f ( v ) ⇔ u = v . Tính chất 3: Nếu hàm f tăng và g là hàm hằng hoặc giảm trong khoảng ( a;b) thì phương trình f(x)=g(x) có nhiều nhất một nghiệm thuộc khoảng (a;b). Định lý Lagrange: Cho hàm số F(x) liên tục trên đoạn [a;b] và tồn tại F'(x) trên khoảng (a;b) thì ∃c ∈ ( a; b ) : F ( b) − F ( a ) F ' ( c) = . Khi áp dụng giải phương trình nếu có F(b) – F(a) = 0 thì b−a ∃c ∈ ( a; b ) : F ' ( c ) = 0 ⇔ F ' ( x ) = 0 có nghiệm thuộc (a;b). Định lý Rôn: Nếu hàm số y=f(x) lồi hoặc lõm trên miền D thì phương trình f(x)=0 sẽ không có quá hai nghiệm thuộc D. Ví dụ 1: Giải phương trình: x + 2.3log2 x = 3 . Hướng dẫn: x + 2.3log2 x = 3 ⇔ 2.3log 2 x = 3 − x , vế trái là hàm đồng biến, vế phải là hàm nghịch biến nên phương trình có nghiệm duy nhất x=1. Ví dụ 2: Giải phương trình: 6 x + 2 x = 5 x + 3x . Phương trình tương đương 6 x − 5 x = 3x − 2 x , giả sử phương trình có nghiêm α. Khi đó: 6 α − 5 α = 3α − 2 α . Xét hàm số f ( t ) = ( t + 1) − t α , với t > 0. Ta nhận thấy f(5) = f(2) nên theo định lý lagrange tồn tại c ∈ ( 2;5 ) α α −1 sao cho: f ( c ) = 0 ⇔ α ( c + 1) − cα −1  = 0 ⇔ α = 0, α = 1 , thử lại ta thấy x = 0, x = 1 là nghiệm của '     phương trình. www.VNMATH.com 3 Thái Thanh Tùng
  4. www.VNMATH.com Chuyên đề: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit 2 −x + 2 x −1 = ( x − 1) 2 . Viết lại phương trình dưới dạng Ví dụ 3: Giải phương trình: −2 x + x 2 − x , xét hàm số f ( t ) = 2 + t là hàm đồng biến trên R ( ??? ). Vậy phương trình t 2 2 x −1 + x − 1 = 2 x −x được viết dưới dạng: f ( x − 1) = f ( x − x ) ⇔ x − 1 = x − x ⇔ x = 1 . 2 2 Ví dụ 4: Giải phương trình: 3x + 2 x = 3 x + 2 . Dễ dàng ta tìm được nghiệm: x = 0 và x = 1. Ta cần chứng minh không còn nghiệm nào khác. Xét hàm số f ( x ) = 3x + 2 x − 3x − 2 ⇒ f '' ( x ) = 3x ln 2 3 + 2 x ln 2 2 > 0 ⇒ Đồ thị của hàm số này lõm, suy ra phương trình không có quá hai nghiệm. x y e = 2007 − y −1 2  Ví dụ 5: Chứng minh hệ phương trình  có đúng hai nghiệm thỏa mãn x > 0, y > 0. x e y = 2007 −  x2 − 1  x HD: Dùng tính chất 2 để chỉ ra x = y khi đó xét hàm số f ( x ) = e + − 2007 . x x2 − 1 Nếu x < −1 thì f ( x ) < e − 2007 < 0 suy ra hệ phương trình vô nghiệm. −1 Nếu x > 1 dùng định lý Rôn và chỉ ra với x0 = 2 thì f(2) < 0 để suy ra điều phải chứng minh. b a  2a + 1  ≤  2b + 1  (ĐH Khối D−2007) Ví dụ 6: Cho a ≥ b > 0 . Chứng minh rằng  ÷ ÷  2a   2b  1 1 ln  2 a + a  ln  2b + b    ÷ ÷ 2  . Xét hàm số 1 1 HD: BĐT  2  ⇔ b ln  2 a + a  ≤ a ln  2b + b  ⇔ ≤  ÷  ÷ a b  2  2 1 ln  2 x + x   ÷ 2  với x > 0  f ( x) = x Suy ra f’(x) < 0 với mọi x > 0, nên hàm số nghịch biến vậy với a ≥ b > 0 ta có f (a ) ≤ f ( b ) (Đpcm). IV. Một số bài toán (đặc biệt là các bài logarrit) ta thường phải đưa về phương trình – hệ phương trình – bất phương trình mũ rồi sử dụng các phương pháp trên. 1.Dạng 1: Khác cơ số: Ví dụ: Giải phương trình log 7 x = log3 ( x + 2) . Đặt t = log 7 x ⇒ x = 7t Khi đó phương trình trở thành: t t  7 1 + 2.   . t = log 3 ( 7t + 2) ⇔ 3t =7t + 2 ⇔ 1 =  3÷ 3÷    2.Dạng 2: Khác cơ số và biểu thức trong dấu log phức tạp ( x2 − 2 x − 3 ) . Ví dụ 1: Giải phương trình log 4 6 ( x 2 − 2 x − 2) = 2 log 5 Đặt t = x2 – 2x – 3 ta có log 6 ( t + 1) = log5 t . ( ) log x Ví dụ 2: Giải phương trình log 2 x + 3 6 = log 6 x . Đặt t = log 6 x , phương trình tương đương t 3 6t + 3t = 2t ⇔ 3t +  ÷ = 1 . 2 log b ( x +c ) 3. Dạng 3: ( Điều kiện: b = a + c ) =x a Ví dụ 1: Giải phương trình 4log7 ( x +3) = x . Đặt t = log 7 ( x + 3) ⇒ 7t = x + 3 , phương trình tương t t đương 4t = 7t − 3 ⇔   + 3.   = 1 . 4 1 ÷ ÷ 7 7 Ví dụ 2: Giải phương trình 2 log3 ( x + 5 ) = x + 4 . Đặt t = x+4 phương trình tương đương 2 log3 ( t +1) = t Ví dụ 3: Giải phương trình 4log3 ( x +1) − ( x − 1) 2log3 ( x +1) − x = 0 . ( dx +e ) +α +β , với d = ac + α , e = bc + β 4. Dạng 4: s ax + =c log s b x www.VNMATH.com 4 Thái Thanh Tùng
  5. www.VNMATH.com Chuyên đề: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit Phương pháp: Đặt ay + b = log s (dx + e) rồi chuyển về hệ hai phương trình, lấy phương trình hai trừ phương trình một ta được: s ax +b + acx = s ay +b + acy . Xét f ( t ) = s at +b + act . Ví dụ: Giải phương trình 7 x −1 = 6 log 7 (6 x − 5) + 1 . Đặt y − 1 = log 7 ( 6 x − 5 ) . Khi đó chuyển thành hệ 7 x −1 = 6 ( y − 1) + 1  x −1 7 = 6 y − 5  ⇒ 7 x −1 + 6 x = 7 y −1 + 6 y . Xét hàm số f ( t ) = 7t −1 + 6t suy ra x=y, Khi ⇔  y −1   y − 1 = log 7 ( 6 x − 5 ) 7 = 6 x − 5   đó: 7 x −1 − 6 x + 5 = 0 . Xét hàm số g ( x ) = 7 x −1 − 6 x + 5 Áp dụng định lý Rôn và nhẩm nghiệm ta được 2 nghiệm của phương trình là: x = 1, x = 2. 5. Dạng 5: Đặt ẩn phụ chuyển thành hệ phương trình. 2x 8 18 +x = x −1 1− x Ví dụ: Giải phương trình x −1 2 +1 2 + 2 2 + 2 + 2 8 1 18 + 1− x = x −1 1− x , đặt u = 2 x −1 + 1, v = 21− x + 1.u, v > 0 . HD: Viết phương trình dưới dạng x −1 2 +1 2 + 2 2 + 2 + 2 8 1 18 += Nhận xét: u.v = u + v. Từ đó ta có hệ:  u v u + v u.v = u + v  Bài tập Bài 1: Giải các phương trình sau: a. ( 2 + 3 ) + ( 2 − 3 ) − 4 = 0 x x ( ) +( ) x x 2− 3 2+ 3 =4 b. c. ( 7 + 4 3 ) − 3 ( 2 − 3 ) + 2 = 0 x x d. ( 3 + 5 ) + 16 ( 3 − 5 ) = 2 x +3 x x ( )( ) x x 2 −1 + 2 + 1 − 2 2 = 0 (ĐH_Khối B 2007) ĐS: x=1, x=−1. e. f. 3.8x+4.12x−18x−2.27x=0. (ĐH_Khối A 2006) ĐS: x=1. 2 2 g. 2 x + x − 4.2 x − x − 22 x + 4 = 0 (ĐH_Khối D 2006) ĐS: x=0, x=1. ĐS: x=−1, x=2. 2 2 k. 2 x − x − 22+ x − x = 3 (ĐH_Khối D 2003) i. 3.16 x + 2.8 x = 5.32 x 1 1 1 j. 2.4 x + 6 x = 9 x Bài 2: Giải các hệ phương trình sau: 5 x + y = 125  4 x + y = 128   a.  3 x −2 y −3 b.  2  4( x − y ) −1 = 1 =1 5    2 x + 2 y = 12  c.  x + y = 5  log 2 ( x 2 + y 2 ) = 1 + log 2 ( xy )  (ĐH_Khối A 2009) ĐS: (2;2), (−2;−2) d.  2 2 3x − xy + y = 81   x −1 + 2 − y =1  (ĐH_Khối B 2005) ĐS: (1;1), (2;2). e.  3log 9 ( 9 x ) − log 3 y = 3 2 3   1 log 1 ( y − x ) − log 4 y = 1 (ĐH_Khối A 2004) ĐS: (3;4) f.  4  x 2 + y 2 = 25  www.VNMATH.com 5 Thái Thanh Tùng
  6. www.VNMATH.com Chuyên đề: Phương trình− Bất phương trình− hệ phương trình Mũ_Logarit  23 x = 5 y 2 − 4 y  (ĐH_Khối D 2002) ĐS: (0;1), (2;4). g.  4 x + 2 x +1 =y x  2 +2 Bài 3: Giải và biện luận phương trình: a . ( m − 2 ) .2 x + m.2− x + m = 0 . b . m.3x + m.3− x = 8 . Bài 4: Cho phương trình log 3 x + log 3 x + 1 − 2m − 1 = 0 (m là tham số). (ĐH_Khối A 2002) 2 2 a. Giải phương trình khi m=2. b. Tìm m để phương trình có ít nhất một nghiệm thuộc đoạn 1; 3  . 3   ĐS: a. x = 3± 3 , b. 0 ≤ m ≤ 2 ( ) 16 x −1 − m. 2 x + 1 > 0 Bài 5: Cho bất phương trình 4 a. Giải bất phương trình khi m= . 9 b. Định m để bất phương trình thỏa ∀x ∈ R . Bài 6: Giải các phương trình sau: a. log5 x = log5 ( x + 6 ) − log5 ( x + 2 ) b. log5 x + log 25 x = log 0,2 3 ( ) x+3 2 d. lg( x 2 + 2 x − 3) + lg c. log x 2 x − 5 x + 4 = 2 =0 x −1 e. log2x−1(2x2+x−1)+logx+1(2x−1)2=4 (ĐH Khối A_2008) ĐS: x=2; x=5/4. f. log 2 ( x + 1) − 6 log 2 x + 1 + 2 = 0 (ĐH_Khối D 2008) ĐS: x=1, x=3. 2 1 g. log 2 ( 4 + 15.2 + 27 ) + 2 log 2 =0 x x (ĐH_Khối D 2007) ĐS: x=log23. 4.2 − 3 x Bài 7: Giải bất phương trình: a. 2 log3 (4 x − 3) + log 1 ( 2 x + 3) ≤ 2 (ĐH Khối A_2007) ĐS: 3/4 ≤ x ≤ 3. 3  x2 + x  ÷< 0 b. log 0,7  log 6 (ĐH_Khối B 2008) ĐS: −4< x < −3, x > 8. x+4   c. log 5 ( 4 + 144 ) − 4 log 5 2 < 1 + log 5 ( 2 + 1) x−2 x (ĐH_Khối B 2006) ĐS: 2 < x < 4. x − 3x + 2 2 )( (ĐH_Khối D 2008) ĐS:  2 − 2;1 U 2; 2 + 2  . ≥0 d. log 1   x 2 −−−−−−−−−−−−−−−−−−−−−−− www.VNMATH.com 6 Thái Thanh Tùng

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản