intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Vật lý: Xác định phân bố liều bức xạ Photon ở lối ra của máy gia tốc Primus – Siemens dùng trong xạ trị

Chia sẻ: Lavie Lavie | Ngày: | Loại File: PDF | Số trang:58

104
lượt xem
8
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Luận văn Thạc sĩ Vật lý: Xác định phân bố liều bức xạ Photon ở lối ra của máy gia tốc Primus – Siemens dùng trong xạ trị gồm có 3 chương trình bày về phương pháp xạ trị dùng tia gamma, máy gia tốc Primus - Siemens dùng trong xạ trị, xác định bằng thực nghiệm.

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Vật lý: Xác định phân bố liều bức xạ Photon ở lối ra của máy gia tốc Primus – Siemens dùng trong xạ trị

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH ------------------------- NGUYỄN THỊ THU HÀ XÁC ĐỊNH PHÂN BỐ LIỀU BỨC XẠ PHOTON Ở LỐI RA CỦA MÁY GIA TỐC PRIMUS – SIEMENS DÙNG TRONG XẠ TRỊ LUẬN VĂN THẠC SĨ VẬT LÝ Thành phố Hồ Chí Minh - 2010
  2. LỜI CẢM ƠN Sau một thời gian thực hiện, Bản Luận văn “Xác định phân bố liều bức xạ photon ở lối ra của máy gia tốc Primus Siemen dùng trong xạ trị” đã được hoàn thành Với tình cảm đặc biệt chân thành, em xin bày tỏ lòng biết ơn sâu sắc đến PGS.TS. Bùi Văn Loát - Trường Bộ môn Vật Lý Hạt nhân - trường Đại học Khoa Học Tự Nhiên Hà Nội, thầy đã tận tình, trực tiếp hướng dẫn, chỉ bảo em trong suốt quá trình thực hiện Luận Văn này. Em cũng xin chân thành cảm ơn tập thể cán bộ, nhân viên trong khoa Xạ Trị bệnh viện K- Hà Nội đã nhiệt tình giúp đỡ và tạo điều kiện thuận lợi cho em trong thời gian thực tập tại bệnh viện Em cũng xin bày tỏ lòng biết ơn đến các thầy cô giáo khoa Vật Lý, khoa KHCN - Sau Đại học Trường Đại học Sư Phạm Thành phố Hồ Chí Minh đã tận tình giảng dạy, chỉ dẫn em trong quá trình học tập tại trường. Em cũng xin gửi lời cảm ơn đến gia đình, bạn bè đã động viên, giúp đỡ tạo điều kiện thuận lợi cho em trong thời gian học tập và thực hiện đề tài. Dù đã có nhiều cố gắng trong quá trình thực hiện, song Luận Văn khó tránh khỏi những thiếu sót. Em rất mong nhận được sự góp ý, chỉ bảo của các thầy cô, bạn bè và những người quan tâm. T.P. Hồ Chí Minh, tháng 8 năm 2010 Học viên Nguyễn Thị Thu Hà
  3. MỞ ĐẦU Ngay sau khi khám phá ra tia X của Roentgen năm 1895, trong quá trình khởi đầu của kỹ thuật xạ trị, công nghệ phát tia xạ ban đầu chú trọng vào việc tạo ra cường độ và năng lượng chùm electron và photon cao hơn. Trong suốt năm mươi năm đầu phát triển kỹ thuật xạ trị, công nghệ xạ trị phát triển khá chậm chạp và chủ yếu dựa trên ống phóng tia X. Phát minh về thiết bị điều trị từ xa Cobalt- 60 của H.E. Johns vào đầu những năm năm mươi của Thế kỉ XX đã tạo nên bước phát triển lớn trong việc tìm kiếm những nguồn photon năng lượng lớn hơn và thiết bị Cobalt- 60 đã được đặt lên vị trí hàng đầu trong một số năm. Trong thời gian đó, máy gia tốc tuyến tính cũng được nghiên cứu phát triển và nhanh chóng chiếm ưu thế so với thiết bị Cobalt- 60. Cho đến nay máy gia tốc dùng trong xạ trị đã phát triển qua năm thế hệ với độ phức tạp ngày càng tăng và trở thành nguồn bức xạ được sử dụng rộng rãi nhất trong kỹ thuật xạ trị hiện đại hiện nay. Với thiết kế nhỏ gọn và hiệu quả, máy gia tốc tuyến tính rất linh hoạt trong sử dụng, cung cấp các nguồn tia X megevolt hoặc electron cho điều trị với một dải năng lượng rộng đáp ứng được yêu cầu hiện nay. Với sự phát triển mạnh mẽ của công nghệ thông tin, các máy gia tốc dùng trong xạ trị đều được kết nối với hệ điều khiển tự động. Quá trình chiếu được điều khiển tự động từ hệ máy tính trung tâm cho phép điều chỉnh năng lượng của chùm electron và photon phát ra và kiểm soát được liều và suất liều phát ra. Hiện nay bệnh ung thư đang là một trong những bệnh nguy hiểm với mức độ phát triển rất nhanh trên thế giới nói chung và ở Việt Nam nói riêng. Do đó, việc chẩn đoán và điều trị ung thư có vai trò vô cùng quan trọng trong chương trình Phòng chống ung thư ở mọi quốc gia. Và việc trang bị thiết bị điều trị, lựa chọn phác đồ, phương pháp điều trị thích hợp là rất cần thiết. Có ba phương pháp điều trị ung thư cơ bản - các phương pháp này có thể áp dụng riêng rẽ hoặc kết hợp với nhau để đạt hiệu quả điều trị cao nhất:  Phẫu thuật  Xạ trị  Hóa trị Trong đó xạ trị là một phương pháp rất hiệu quả, đã và đang phát triển trên toàn thế giới và tại Việt Nam. Xạ trị có thể được thực hiện điều trị đơn thuần hoặc kết hợp với phẫu thuật và hóa trị để loại bỏ hoàn toàn khối u, góp phần làm giảm các triệu chứng đau đớn trên cơ thể người bệnh.
  4. Phương pháp xạ trị hiện đại và phổ biến trên thế giới hiện nay là xạ trị chiếu ngoài sử dụng máy gia tốc tuyến tính – đây là phương pháp rất hữu hiệu trong điều trị ung thư. Tháng 1 năm 2001, Bệnh viện K- Hà Nội được trang bị hệ thống máy gia tốc tuyến tính Primus thế hệ mới nhất với nhiều ưu điểm nổi bật của hãng Siemens - một trong những hãng sản xuất thiết bị y tế tốt nhất thế giới. Hiện nay trên cả nước đã có thêm một số cơ sở khác cũng đã sử dụng máy gia tốc trong xạ trị trị như bệnh viện Bạch Mai, Bệnh viện Chợ Rẫy, Bệnh viện Đa khoa Đà Nẵng…Phương pháp xạ trị từ xa sử dụng máy gia tốc hiện đang có xu hướng phát triển mạnh ở nước ta. Một trong các nguyên tắc cần phải đảm bảo trong điều trị bằng tia xạ nói chung và xạ trị bằng chùm photon phát ra từ máy gia tốc nói riêng là liều bức xạ phải tập trung và đồng đều tại khối u và giảm thiểu tối đa liều tại các tổ chức lành bao quanh khối u. Để có thông tin chính xác trong việc tính toán liều chiếu và hình học chiếu cần phải biết dạng phân bố liều chiếu tại khu vực xung quanh khối u. Xác định liều hấp thụ và phân bố liều của chùm bức xạ phát ra từ máy xạ trị là việc làm hằng tuần của các kỹ sư Vật Lý trong Khoa Xạ Trị tại các cơ sở y tế có điều trị ung thư bằng tia phóng xạ. Ngoài ra kết quả thu được về phân bố của liều chiếu của chùm bức xạ photon phát ra từ máy gia tốc cho biết rõ hơn cơ chế tương tác của electron với vật chất và cơ chế sinh bức xạ hãm khi chùm electron được gia tốc tương tác với vật chất. Để nâng cao hiệu quả việc điều trị bệnh ung thư bằng chùm photon phát ra từ máy gia tốc electron, ở đầu ra của máy gia tốc xạ trị, người ta sử dụng colimator đa lá để định dạng kích thước của chùm bức xạ photon và gạt bỏ phần phổ bức xạ hãm có năng lượng thấp. Vì vậy, theo quy ước, người ta lấy thế gia tốc chùm electron tạo ra chùm photon để chỉ mức năng lượng của chùm photon tương ứng. Cụ thế đối với máy gia tốc xạ trị ở Bệnh viện K, chế độ phát chùm photon có 2 mức ứng với thế gia tốc là 6 MV và 15MV, tương ứng ta thu được chùm photon 6MV và 15MV. Bản Luận văn: “ Xác định phân bố liều bức xạ photon ở lối ra của máy gia tốc PRIMUS - Siemens dùng trong xạ trị” có nhiệm vụ: - Tìm hiểu cơ chế tương tác của chùm bức xạ photon với vật chất và ứng dụng của bức xạ photon trong điều trị bệnh ung thư. - Tìm hiểu cơ chế sinh bức xạ hãm khi chùm electron được gia tốc tương tác với bia nặng và đặc điểm chùm bức xạ photon phát ra từ máy gia tốc tuyến tính PRIMUS dùng trong xạ trị tại Bệnh viên K. - Xác định bằng thực nghiệm phân bố liều hấp thụ của chùm bức xạ photon năng lượng 6 MV và 15 MV tại điểm cách bia (nguồn) 100cm, ứng với vị trị bệnh nhân nằm điều trị với kích thước trường chiếu khác nhau, từ đó đánh giá sự đồng liều hấp thụ tại khối u.
  5. Ngoài phần mở đầu và kết luận, Bản Luận văn được chia thành ba chương: Chương 1: Phương pháp xạ trị dùng tia gamma. Chương này trình bày cơ sở vật lý và sinh học của xạ trị dùng bức xạ photon, quá trình tương tác của bức xạ photon với vật chất và với các cơ thể sống, tác dụng sinh học của bức xạ, các đơn vị đo liều lượng bức xạ. Chương 2: Máy gia tốc Primus- Siemens dùng trong xạ trị. Chương này trình bày ngắn gọn về nguyên lý hoạt đồng và sơ đồ cấu tạo của máy gia tốc dùng trong xạ trị, cơ chế lấy chùm bức xạ photon từ máy gia tốc electron để phục vụ việc điều trị bệnh ung thư. Chương 3: Xác định bằng thực nghiệm: - Phân bố liều chiếu bức xạ photon theo khoảng cách. - Phân bố liều của chùm bức xạ photon năng lượng 6 MV và 15 MV trên các mặt phẳng vuông góc với trục của chùm bức xạ ở ngoài không khí và trong phantom, từ đó đánh giá sự đồng liều hấp thụ tại khối u. - Xây dựng đường cong liều sâu phần trăm hay đồ thị phân bố liều hấp thụ tương đối theo chiều sâu trong phantom nước, từ đó thấy hiệu quả của việc điều trị các khối u sâu dùng chùm photon.
  6. CHƯƠNG 1 PHƯƠNG PHÁP XẠ TRỊ DÙNG TIA GAMMA 1.1 . TƯƠNG TÁC CỦA ELECTRON VỚI VẬT CHẤT Khi chùm bức xạ bêta đi trong môi trường chúng tương tác với các nguyên tử của môi trường và mất dần năng lượng của mình do hai quá trình chủ yếu là ion hóa do va chạm và phát bức xạ hãm. Sự mất năng lượng do va chạm là kết quả tán xạ không đàn hồi của bức xạ bêta với electron nguyên tử của môi trường. Khác với hạt nặng tích điện, bức xạ bêta có khối lượng bằng khối lượng electron, do đó sau mỗi lần tương tác với electron nguyên tử của môi trường, hạt bêta có thể mất phần lớn năng lượng của mình. Ngoài ra, góc tán xạ biến đổi từ 00 đến 1800. Đường đi của hạt bêta trong môi trường là đường zic-zắc. Trên đường đi năng lượng của bức xạ bêta giảm dần nên vận tốc của nó cũng giảm dần. Hạt bức xạ bêta chuyển động có gia tốc. Bức xạ bêta chuyển động có gia tốc trong trong trường Coulomb của hạt nhân và trường Coulomb của electron. Theo điện động lực học cổ điển, bức xạ bêta sẽ phát bức xạ hãm. Xác suất phát bức xạ hãm càng lớn khi khối lượng của hạt càng nhỏ, năng lượng càng lớn và nguyên tử số của môi trường càng tăng. Độ mất mát năng lượng riêng do phát bức xạ trên một đơn vị đường đi của bức xạ bêta được [6] xác định theo công thức sau :  dE   dE   dE  (1.1)       dx   dx Coul  dx  rad  dE   dE   dE  Trong đó  ,   ,   tương ứng là độ mất mát năng lượng tổng cộng, độ mất  dx   dx Coul  dx  rad mát năng lượng do ion hóa và do phát bức xạ hãm tính trên một đơn vị đường đi. Tùy theo năng lượng của bức xạ bêta và nguyên tử số của môi trường các quá trình mất mát năng lượng do ion hóa hoặc do phát bức xạ hãm thể hiện ở mức độ khác nhau. 1.1.1. Sự mất mát năng lượng của bức xạ bêta do ion hóa và kích thích môi trường Khi đi trong môi trường, do tương tác Coulomb với các electron của nguyên tử môi trường, hạt bêta truyền năng lượng của mình cho các electron. Nếu eletron nhận được năng lượng lớn hơn thế năng ion hóa, nó sẽ bay ra khỏi nguyên tử, kết quả một cặp ion-electron được tạo thành. Nguyên tử bị ion hóa. Ngược lại nếu năng lượng mà electron nhận được nhỏ hơn thế năng ion hóa của nguyên tử, electron nhảy lên mức năng lượng cao hơn. Quá trình này gọi là sự kính thích nguyên tử môi trường.
  7. Sau mỗi lần tán xạ không đàn hồi của electron, nó có thể mất một phần đáng kể năng lượng của mình. Do khối lượng của bêta bằng khối lượng của electron, nên sau mỗi lần va chạm, xác suất để bức xạ bêta mất một nửa năng lượng của mình là lớn nhất. Độ mất mát năng lượng của bức xạ bêta trên một đơn vị đường đi được [6] xác định theo công thức Bethe-Bloch:  dE  Z 1  k 2 (k  1) CV     2 .N A .re .me .c . . . 2  ln  P(k )    (1.2) 2 2  dx Col A   2(1 / me c ) 2 Z  trong đó: NA là số Advogadro, re, me là bán kính cổ điển tính ra cm và khối lượng của electron; Z, A v là điện tích và số khối của môi trường,  là mật độ khối của môi trường;   với v là vận tốc của c hạt bêta và c là vận tốc ánh sáng, k là động năng của hạt bêta tính trong đơn vị mec2, , Cv là hệ số hiệu chỉnh hiệu ứng mật độ và hiệu ứng vỏ; F(k) là hàm của động năng. Hàm F(k) có dạng sau: k2  (2k  1). ln 2 F (k )  1   2  8 (1.3) (k  1) 2 Với bức xạ bêta có năng lượng xác định, độ mất năng lượng trên một đơn vị đường đi tỉ lệ thuận với mật độ của môi trường. Với môi trường xác định, độ mất mát năng lượng trên một đơn vị đường đi giảm dần, sau đó đạt giá trị hầu như không đổi. Khi năng lượng của bức xạ bêta nhỏ, sự mất mát năng lượng do phát bức xạ hãm nhỏ hơn độ mất mát năng lượng do ion hóa. Tuy nhiên khi năng lượng của bức xạ bêta tăng, độ mất mát năng lượng do ion hóa và kích thích môi trường giảm dần, còn độ mất mát năng lượng do phát bức xạ hãm tăng dần. Đến giá trị năng lượng đủ lớn, độ mất mát năng lượng của bức xạ bêta do phát bức xạ hãm chiếm ưu thế. 1.1.2. Độ mất mát năng lượng của bức xạ bêta do phát bức xạ hãm Khi chuyển động trong điện trường của hạt nhân, bức xạ bêta có thể thu được một gia tốc lớn. Gia tốc của hạt tích điện thu được tỉ lệ với điện tích của hạt nhân và tỉ lệ nghịch với khối lượng của nó. Theo điện động lực học cổ điển, khi một hạt tích điện chuyển động có gia tốc, thì nó sẽ phát ra bức xạ điện từ, được gọi là bức xạ hãm. Phổ bức xạ hãm là phổ liên tục, có năng lượng từ 0 đến năng lượng cực đại bằng năng lượng của hạt tích điện . Độ mất mát năng lượng do phát bức xạ hãm trên một đơn vị đường đi được [6] xác định theo công thức :  dE   2 E0 1    4 N .E0 .Z .re . . ln   f ( Z )  (1.4) 2  2 2  dx  rad  me .c 3 
  8. trong đó N là số nguyên tử môi trường trong một đơn vị thể tích; E0 là động năng của electron, 1  là hằng số cấu trúc tinh tế, me là khối lượng nghỉ của electron; Z là điện tích của hạt nhân. 137 Độ mất mát năng lượng do phát bức xạ hãm tăng theo hàm logarit tự nhiên của năng lượng. Khi năng lượng tăng độ mất mát năng lượng do phát bức xạ hãm tăng theo, trong khi đó, độ mất mát năng lượng do ion hóa hầu như không đổi. Khi năng lượng của electron cỡ vài MeV trở lên, mối liên hệ giữa độ mất mát năng lượng do phát bức xạ hãm và do ion hóa được xác định theo công thức sau:  dE     dx  rad  EZ (1.5)  dE  800    dx col Từ công thức (1.2) và (1.4) nhận thấy, độ mất mát năng lượng trên một đơn vị đường đi của electron phụ thuộc vào nguyên tử số của chất hấp thụ. Với một môi trường hấp thụ cho trước, khi năng lượng nhỏ, độ mất mát năng lượng do ion hóa và kích thích môi trường chiếm ưu thế, tại đó, tỉ số giữa độ mất mát năng lượng do phát bức xạ hãm và do ion hóa nhỏ hơn đơn vị. Khi năng lượng tăng, tỉ số này tăng dần. Đến một giá trị năng lượng gọi là năng lượng tới hạn Ec khi đó độ mất mát năng lượng do phát bức xạ hãm bằng độ mất mát năng lượng do ion hóa. Tại năng lượng tới hạn E=EC, ta có:  dE   dE  (1.6)      dx  rad  dx col Năng lượng tới hạn Ec phụ thuộc vào điện tích của hạt nhân hay chính xác phụ thuộc vào nguyên tử số của môi trường. Từ biểu thức (1.5) nhận thấy: Nguyên tử số của môi trường càng lớn, năng lượng tới hạn càng giảm. Năng lượng tới hạn được [6] xác định theo công thức: 800 EC  MeV Z  1,2 (1.7) Khi năng lượng của electron lớn hơn nhiều năng lượng tới hạn, sự mất mát năng lượng của nó chủ yếu do phát bức xạ hãm. Để đặc trưng cho khả năng hãm bức xạ bêta của môi trường người ta đưa ra khái niệm chiều dài bức xạ của môi trường. Chiều dài làm chậm bức xạ của một chất là 1 khoảng cách mà năng lượng của electron giảm đi hệ số  0,367 do phát bức xạ hãm. Chiều dài e bức xạ của một chất phụ thuộc vào nguyên tử số và số khối của nó. Chiều dài bức xạ kí hiệu là X0 được xác định theo công thức [6 ]: 716,4. A Xo  ( g / cm 2 ) (1.8)  287  Z .( Z  1). ln   Z 
  9. trong đó Z là nguyên tử số, A là số khối của nguyên tử môi trường. Đối với môi trường phức tạp nhiều thành phần, chiều dài làm chậm bức xạ của môi trường được xác định theo chiều dài làm chậm bức xạ của tất cả các thành phần có trong môi trường theo công thức sau: n 1 A 1 (1.9)   qi . i  X o i 1 AM X i trong đó: Xo là chiều dài làm chậm bức xạ của môi trường phức tạp; Xi là chiều dài làm chậm bức xạ của môi trường chỉ có nguyên tử có số khối Ai ; qi là hàm lượng của nguyên tử có số khối n Ai; AM   Ai là số khối hiệu dụng của môi trường. i 1 Khi đi trong môi trường do tương tác của electron với vật chất, năng lượng của nó giảm dần. Khi năng lượng của electron lớn hơn năng lượng tới hạn, độ mất mát năng lượng của electron chủ yếu do phát bức xạ hãm. Sự thay đổi năng lượng trung bình E như là một hàm của đường đi x của electron trong môi trường, được xác định theo công thức sau:  x  E  Eo . exp   (1.10)  Xo  trong đó E0, X0 lần lượt là năng lượng ban đầu của bức xạ bêta và chiều dài bức xạ của môi trường. 1.1.3. Các đặc trưng của bức xạ hãm Trong nguyên lí của máy gia tốc dùng xạ trị, khi máy ở chế độ phát tia X, chùm electron sau khi đã gia tốc được lái đến đập vào bia làm phát ra bức xạ hãm (tia X ). Với mục đích đó, năng lượng của chùm hạt phải lớn hơn năng lượng tới hạn rất nhiều để phần động năng truyền cho electron phần lớn chuyển thành năng lượng của bức xạ hãm. Mặt khác, bia phát bức xạ hãm cũng phải cấu tạo sao cho năng suất phát bức xạ hãm là tối ưu. Từ công thức (1.7) cho thấy năng lượng tới hạn tỉ lệ nghịch với nguyên tử số của môi trường. Mặt khác từ công thức (1.8) nhận thấy chiều dài làm chậm bức xạ giảm khi nguyên tử số của môi trường tăng. Do đó, người ta sử dụng các bia nặng, tức là các bia là các nguyên tố có nguyên tử số lớn, để làm bia phát bức xạ. Từ công thức (1.10) ta thấy sự mất mát năng lượng của chùm hạt electron tỉ lệ với chiều dài đường đi của nó trong môi trường vật chất, hay năng suất hãm sẽ tăng khi bề dày bia tăng. Tuy nhiên, kết quả thực nghiệm cho thấy rằng khi bề dày bia tăng sẽ kéo theo nhiều hiệu ứng không mong muốn. Khi bề dày bia quá lớn, năng lượng của hạt electron bị mất mát không do phát bức xạ tăng lên. Mặt khác, các photon của bức xạ sinh ra sẽ bị hấp thụ một phần ngay bên trong bia. Trong các bia có bề dày lớn hơn chiều dài bức xạ thì chùm electron năng lượng cao chuyển động trong đó sẽ tạo ra hiện tượng mưa rào thác lũ electron - photon làm cho việc tính toán phân bố của chùm tia
  10. tạo ra rất rắc rối, khó thực hiện được. Do đó, bề dày bia phải được tính toán thật phù hợp. Một bia hãm phù hợp nhất là bia cho lượng bức xạ hãm lớn nhất ở một năng lượng xác định của electron tới. Khi nghiên cứu sự phụ thuộc của năng suất hãm bức xạ vào bề dày của các bia nặng với mỗi giá trị năng lượng xác định của electron, về cơ bản có thể biểu diễn bằng đường cong có dạng như hình 1.1. Từ đồ thị ta thấy trên đường cong có một đỉnh cực đại. Như vậy, với mỗi chất liệu làm bia, tại một giá trị năng lượng electron xác định có một giá trị bề dày để năng suất hãm bức xạ đạt giá trị lớn nhất. Giá trị đó chính là bề dày tối ưu của bia hãm bức xạ bêta. Giá trị này được tìm từ thực nghiệm. Người ta thấy rằng với electron có năng lượng trong khoảng 5 MeV đến 30 MeV thì các bia nặng có bề dày tối ưu để hãm bức xạ là bằng khoảng 0,3 lần chiều dài bức xạ của nó. 1.4 E e = 17 M e V g 1.2 1.0 ( 0.8 0.6 p ¸ 0.4 0.2 g 0.0 0.01 0.1 1 10 Hình 1.1: Sự phụ thuộc của năng suất hãm vào bề dày bia Au ( với mức năng lượng Ee= 17MeV) Năng suất hãm bức xạ của bia còn phụ thuộc mạnh vào năng lượng của chùm electron. Đối với các bia làm bằng nguyên tố nặng, năng suất hãm được [6] xác định bằng công thức : P  82.Eo2.63 (1.11) trong đó Eo là năng lượng ban đầu của electron. Nói chung bề dày tối ưu của một bia hãm bức xạ thường nhỏ hơn quãng chạy của electron trong môi trường đó. 10 8 6 4 2 0 -8 -6 -4 -2 0 2 4 6
  11. Hình 1.2. Sự phụ thuộc của cường độ trung bình của bức xạ hãm tạo bởi chùm electron 25MeV từ bia Ta có bề dày 4mm vào góc phát xạ. Từ thực nghiệm, người ta xác định được phân bố theo góc phát xạ của bức xạ hãm. Từ hình trên ta nhận thấy cường độ trung bình của bức xạ hãm đạt cực đại tại góc phát xạ 0o. 1.2. TƯƠNG TÁC CỦA BỨC XẠ PHOTON VỚI VẬT CHẤT Khi chùm photon có năng lượng lớn đi trong môi trường vật chất, chúng tương tác với môi trường thông qua các hiệu ứng: hiệu ứng tán xạ, hiệu ứng hấp thụ quang điện, hiệu ứng tạo cặp và quang hạt nhân. Các hiện tượng này có xảy ra hay không hoặc xảy ra với mức độ nào phụ thuộc vào năng lượng của photon và nguyên tử số của môi trường mà nó đi qua. Phương pháp xạ trị sử dụng chùm photon với mức năng lượng lớn nhất là 15 MeV nên ta chỉ quan tâm tới các hiệu ứng hấp thụ quang điện, tán xạ Compton và hiện tượng tạo cặp. 1.2.1. Hiện tượng hấp thụ quang điện Khi năng lượng của bức xạ photon lớn hơn thế năng ion hóa nguyên tử, hiện tượng tán xạ Rayleigh không còn, xác suất xảy ra hiện tượng hấp thụ quang điện bắt đầu tăng. Mỗi photon đến bị hấp thụ toàn bộ bởi một nguyên tử. Năng lượng này được truyền toàn bộ cho một electron của nguyên tử. Electron nhận được năng lượng lớn hơn thế năng ion hóa của nó, nên nó bị bứt ra khỏi nguyên tử. Electron trên được gọi là quang electron. Một phần năng lượng để thắng thế năng ion hóa, phần còn lại biến thành động năng chuyển động của quang electron. Tia gamma tới Tia X đặc trưng e- e- quang điện Hình 1.3. Sơ đồ hiệu ứng hấp thụ quang điện Để xảy ra hiện tượng hấp thụ quang điện đối với một electron nằm ở lớp nào đó của nguyên tử thì năng lượng của photon bị hấp thụ phải lớn hơn thế năng ion hóa của lớp đó. Xác suất xảy ra hấp thụ quang điện được đặc trưng bằng tiết diện hấp thụ quang điện trên một nguyên tử  a (cm2). Người ta gọi xác suất xảy ra hiện tượng quang điện trên một đơn vị thể tích môi trường chất hấp thụ là hệ số suy giảm tuyến tính của môi trường đối với hiệu ứng quang điện, ký hiệu kq , được [6] tính bằng công thức:
  12. NA kq  . . a (1.12) MA trong đó:  là mật độ môi trường; MA: nguyên tử gam chất hấp thụ; NA: số Avôgađrô. Mặt khác, để đặc trưng cho khả năng hãm bức xạ của một môi trường, người ta thường dùng hệ số suy giảm khối. Hệ số suy giảm khối của một môi trường đối với hiệu ứng quang điện được tính như sau: kq ( 1.13 ) q   Từ hai công thức trên ta rút ra được công thức tính hệ số suy giảm khối do hấp thụ quang điện của một môi trường theo hệ số suy giảm tuyến tính theo công thức: NA ( 1.14 ) q  . a MA Người ta còn tính được hệ số hấp thụ quang điện trên một nguyên tử phụ thuộc vào năng lượng photon tới và nguyên tử số của môi trường theo công thức [6]: Z 3,94 Khi E > IK ( 1.15 )  a  5,01.10 23  3 Z 4,3 ( 1.16 )  a  1,62.10 24 Khi IK> E >IL  3 trong đó Z là nguyên tử số của môi trường; IK và IL là thế năng ion hóa của lớp K và lớp L của nguyên tử môi trường. Từ hai công thức trên ta thấy khi Z càng lớn thì hệ số hấp thụ quang điện càng lớn. Nghĩa là hiện tượng quang điện xảy ra mạnh với với các chất có nguyên tử số lớn hay các nguyên tố nặng. Mặt khác, khi năng lượng của bức xạ photon tăng thì tiết diện hấp thụ quang điện giảm theo hàm E- 3 . 1.2.2. Tán xạ Compton Theo sự tăng năng lượng của bức xạ photon, khi tiết diện xảy ra hấp thụ quang điện giảm thì tiết diện tán xạ Compton tăng lên. Khi đó, đây là quá trình chủ yếu làm suy giảm năng lượng của bức xạ photon đi trong môi trường vật chất. Tán xạ Compton là quá trình tán xạ không đàn hồi của photon với các electron tự do hoặc electron liên kết yếu trong nguyên tử của môi trường. Trong quá trình tán xạ Compton, photon tới truyền một phần năng lượng của mình cho electron và bị tán xạ theo hướng tạo với phương tới một
  13. góc nào đó gọi là góc tán xạ. Kết quả là electron tán xạ nhận được một năng lượng giật lùi và năng lượng của chùm photon thì bị giảm đi. Hình 1.4. Sơ đồ hiện tượng tán xạ Compton Tán xạ Compton xảy ra mạnh khi năng lượng của bức xạ photon lớn hơn nhiều so với năng lượng liên kết của electron. Khi năng lượng của bức xạ photon tăng, các electron tán xạ bay theo hướng ưu tiên về phía trước (nghĩa là góc tán xạ nhỏ). Năng lượng của bức xạ photon tán xạ phụ thuộc vào góc tán xạ và năng lượng của bức xạ photon tới theo công thức [6]: Et Etx  1  k .(1  cos ) ( 1.17 ) trong đó Etx là năng lượng của bức xạ photon tán xạ; Et là năng lượng của bức xạ photon tới;  là góc tán xạ của photon; k là năng lượng tương đối của bức xạ photon tới. Vì tán xạ Compton xảy ra trên electron tự do, nên năng lượng của bức xạ photon tán xạ không phụ thuộc vào chất tán xạ mà chỉ phụ thuộc vào năng lượng của bức xạ gamma tới và góc tán xạ. Khi xảy ra tán xạ, photon bị tán xạ có thể bay theo góc tán xạ bất kỳ, nhưng xác suất tán xạ theo một góc nào đó lại phụ thuộc vào năng lượng của bức xạ photon tới và góc tán xạ. Đối với năng lượng của bức xạ photon nhỏ, phân bố góc của bức xạ có tính đối xứng qua góc tán xạ 90o . Năng lượng của bức xạ photon càng tăng thì các bức xạ photon tán xạ càng có xu hướng ưu tiên về phía trước. Khi lượng tử photon bị tán xạ với một góc nhỏ thì năng lượng của nó thay đổi không đáng kể, lúc đó electron bay theo phương gần vuông góc với nó. Khi lượng tử gamma bị tán xạ với góc 180o thì electron bay ra theo về phía trước với động năng cực đại. Xác suất tán xạ Compton theo mọi hướng trên một electron gọi là xác suất tán xạ Compton toàn phần trên một electron được tính theo công thức [6 ]: k 2  2k  2 k 3  k 2  8k  2  e  2ro2 . ln(1  2 k )  ( 1.18) 2k 3 k 2 (1  2k ) 2
  14. trong đó ro là bán kính cổ điển, bằng 2,82.10-13cm. Trong nguyên tử có Z electron, tiết diện tán xạ Compton trên một nguyên tử được xác định theo công thức:  a  Z . e (1.19) Hệ số suy giảm khối của quá trình tán xạ Compton được tính bằng công thức: Z  C  ( N A / M A ) a  N A   C ( 1.20)  A trong đó, Z và MA là nguyên tử số và nguyên tử lượng của chất tán xạ; NA là số Avôgađrô. 1.2.3. Hiện tượng tạo cặp Khi năng lượng của photon tiếp tục tăng và lớn hơn 1,022MeV, khi photon đi trong vật chất có thể xảy ra hiện tượng tạo cặp. Hiện tượng tạo cặp chỉ xảy ra trong trường Coulomb của hạt nhân hoặc một electron, trong đó năng lượng của photon được biến đổi hoàn toàn thành các hạt vật chất. Hình 1.5. Hiệu ứng tạo cặp Xét quá trình tạo cặp xảy ra trong trường Coulomb của một hạt nhân. Khi một photon năng lượng cao bay vào trong trường Coulomb của hạt nhân nó bị hấp thụ hoàn toàn, tạo ra một cặp electron và positron ( e+, e-). Theo định luật bảo toàn năng lượng, ta có:   M o .c 2  me  me .c 2  Te  Te   M .c 2  K    e ( 1.21)    2.me .c  T  K  ( M  M o )c 2 2 trong đó me-, me+ là khối lượng nghỉ của electron và pozitron và chúng có giá trị bằng nhau, T là tổng động năng của cặp e+,e-; Movà M là khối lượng của hạt nhân trước và sau khi tạo cặp; K là động năng giật lùi của hạt nhân. Do T, K là các đại lượng không âm và MM0, nên ta có:   2.mo .c 2  1,022MeV ( 1.22 ) Từ đó có thể thấy năng lượng nhỏ nhất của lượng tử gamma để có thể xảy ra hiện tượng tạo cặp trong trường Coulomb của hạt nhân là 1,022 MeV. Năng lượng này gọi là ngưỡng tạo cặp trong trường Coulomb của hạt nhân.
  15. Người ta xác định tiết diện tạo cặp trong trường Coulomb của hạt nhân bằng phương pháp thực nghiệm, thu được công thức tính gần đúng như sau:  tc ~ Z 2 . ln  ( 1.23 ) trong đó, Z là nguyên tử số của môi trường;  là năng lượng của lượng tử gamma Từ công thức trên có thể thấy hiện tượng tạo cặp xảy ra mạnh trong trường Coulomb của hạt nhân khi môi trường có nguyên tử số càng lớn và khi năng lượng của lượng tử gamma càng tăng. Người ta thấy rằng, khi năng lượng lớn hơn ngưỡng tạo cặp, tiết hiện tạo cặp sẽ tăng nhanh khi năng lượng của bức xạ photon tăng. Xét quá trình tạo cặp xảy ra trong trường Coulomb của một electron. Khi đó, có hai cặp electron - positron được tạo thành. Ngưỡng tạo cặp trong trường hợp này gấp đôi trong trường hợp trong trường Coulomb của hạt nhân, có giá trị là:  ng  4.mo .c 2  2,044 MeV ( 1.24) Tuy nhiên, xác suất tạo cặp trong trường Coulomb của electron nhỏ hơn rất nhiều so với xác suất tạo cặp trong trường Coulomb của hạt nhân. 1.3. CÁC ĐƠN VỊ ĐO LIỀU BỨC XẠ 1.3.1 Hoạt độ phóng xạ Hoạt độ phóng xạ của một nguồn phóng xạ hay một lượng chất phóng xạ nào đó chính là số hạt nhân phân rã phóng xạ trong một đơn vị thời gian. Hoạt độ phóng xạ được xác định theo công thức sau: dN a (1.25) dt trong đó N là số hạt nhân phóng xạ tại thời điểm t; a là hoạt độ phóng xạ;  là hằng số phân rã. Như vậy ta có : a= N=N0exp(-t) (1.26) Đơn vị đo hoạt độ phóng xạ là Becquerel, viết tắt là Bq. 1Bq tương ứng 1 phân rã trong 1 giâ Trước đây, đơn vị đo hoạt độ phóng xạ là Curie, kí hiệu là Ci, liên hệ với đơn vị Bq như sau: 1 Ci = 3,7.1010 Bq (1.27) Hoạt độ phóng xạ riêng là hoạt độ phóng xạ tính trên một đơn vị khối lượng đối với chất phóng xạ dạng rắn, hoặc tính trên một đơn vị thể tích của chất lỏng hay chất khí.
  16. Đối với chất phóng xạ dạng rắn, đơn vị đo hoạt độ phóng xạ riêng thường dùng là Bq/kg. Còn đối với chất phóng xạ dạng lỏng hay khí, đơn vị đo hoạt độ phóng xạ riêng thường dùng là Bq/m3 hay Bq/l. 1.3.2 Liều chiếu và suất liều chiếu a) Liều chiếu Liều chiếu chỉ áp dụng cho bức xạ gamma hoặc tia X, còn môi trường chiếu xạ là không khí. Liều chiếu cho biết khả năng ion hóa không khí của bức xạ tại một vị trí nào đó. Kí hiệu liều chiếu là X, được xác định theo công thức: dQ X  (1.28) dm Trong đó: dm là khối lượng không khí tại đó chùm tia X hoặc chùm bức xạ gamma bị hấp thụ hoàn toàn, kết quả tạo ra trên dm tổng các điện tích cùng dấu là dQ. Đơn vị liều chiếu trong hệ SI là C/kg. Ngoài ra, trong kỹ thuật người ta còn dùng đơn vị là Rơnghen, được kí hiệu là R. 1 R = 2,58.10-4 C/kg. (1.29) b) Suất liều chiếu Suất liều chiếu chính là liều chiếu trong một đơn vị thời gian. Suất liều chiếu kí hiệu là * X được xác định theo công thức sau: * X X t (1.30) trong đó X là liều chiếu trong thời gian t. Đơn vị đo suất liều chiếu trong hệ SI là C/kg.s. Tuy nhiên, trong thực nghiệm, đơn vị đo suất liều chiếu thường dùng là R/h hay R/h. 1.3.3 Liều hấp thụ và suất liều hấp thụ a) Liều hấp thụ Tác hại của bức xạ lên cơ thể phụ thuộc vào sự hấp thụ năng lượng bức xạ và gần đúng tỉ lệ với nồng độ phần trăm năng lượng hấp thụ trong mô sinh học. Do đó đơn vị cơ bản của liều bức xạ được biểu diễn qua năng lượng hấp thụ trên một đơn vị khối lượng của mô. Khái niệm liều hấp thụ không chỉ dùng cho đối tượng sinh học mà còn dùng cho một môi trường vật chất bất kì. Liều hấp thụ, kí hiệu là D, là tỉ số giữa năng lượng trung bình dE mà bức xạ truyền cho vật chất trong thể tích nguyên tố và khối lượng vật chất dm của thể tích đó: dE D (1.31) dm
  17. Trong hệ SI, đơn vị đo liều hấp thụ là Gray (kí hiệu là Gy). 1 Gy bằng năng lượng 1 June truyền cho 1kg vật chất: 1Gy = 1J/kg. (1.32) Trước khi chấp nhận các đơn vị theo hệ SI, liều hấp thụ được đo bằng đơn vị Rad. 1 Rad là liều hấp thụ 100 erg trên 1 gam. Ta có: 1 rad = 100 erg/g (1.33) Do 1J = 107 erg và 1 kg = 1000g nên: 1 rad = 0,01 Gy hay 1Gy = 100 rad. (1.34) Qua các định nghĩa, ta nhận thấy giữa liều hấp thụ và liều chiếu có mối liên hệ tuyến tính với nhau: D = f. X (1.35) Trong đó D là liều hấp thụ, X là liều chiếu, f là hệ số tỉ lệ. Trong không khí hệ số f = 0,869 rad/R. Trong cơ thể người, f= 0,869 rad/R. b) Suất liều hấp thụ * Suất liều hấp thụ D chính là liều hấp thụ trong một đơn vị thời gian, xác định theo công thức: * D D t (1.36) Đơn vị đo suất hiều hấp thụ trong hệ SI là Gy/s hoặc rad/s. 1.3.4 Liều tương đương và suất liều tương đương a) Liều tương đương Cùng liều hấp thụ tác dụng sinh học của các loại bức xạ khác nhau là khác nhau. Để đặc trưng cho khả năng tác dụng sinh học của bức xạ trong an toàn bức xạ nói chung và trong xạ trị nói riêng ta dùng liều tương đương. Liều tương đương H là đại lương để đánh giá mức độ nguy hiểm của các loại bức xạ bằng tích của liều hấp thụ D với hệ số chất lượng (Quality Factor) đối với các loại bức xạ. Ủy ban Quốc tế về bảo vệ bức xạ ICRP ( International Commission on Radiation Protection) đặt lại tên hệ số chất lượng là trọng số bức xạ (RadiationWeighting Factor) và kí hiệu là WR. Khi đó giữa liều hấp thụ và liều tương đương được liên hệ với nhau theo biểu thức sau: H=D. WR (1.37) Để thuận tiện cho việc theo dõi và sử dụng trong thực tế, bảng 1.1 dẫn ra giá trị hệ số WR đối với các bức xạ thường gặp. Đơn vị liều tương đương trong hệ SI là Sievert (kí hiệu là Sv). Theo công thức (1.37) ta có:
  18. 1 Sv = 1 Gy. WR (1.38) Ngoài Sv, liều tương đương thường dùng là rem: 1 rem= 1 rad. WR (1.39) 1Sv=100 rem hay 1 rem = 0,01 Sv. (1.40) Bảng 1.1. Trọng số bức xạ WR đối với một số loại bức xạ [2], [6] Loại bức xạ Năng lượng WR Tia X, gamma, beta Bất kỳ 1 Nhiệt (0,025eV) 5 0,01 MeV 10 0,1 MeV 10 Neutron 0,5 MeV 20 > 0,1 MeV - 2 MeV 20 > 2 MeV – 20 MeV 5 Proton Năng lượng cao 5 Hạt anpha, mảnh vỡ phân hạch, hạt 20 nhân nặng b) Suất liều tương đương * Suất liều tương đương H là liều tương đương trong một đơn vị thời gian: * H H (1.41) t trong đó H là liều tương đương trong thời gian t. Đơn vị suất liều tương đương trong hệ SI là Sv/s. Đơn vị khác là Sv/h, Sv/h, rem/s hay rem/h. Lưu ý: Khi định nghĩa liều tương đương, chúng ta đã coi tất cả các mô sinh học hay cơ quan trong cơ thể có cùng một độ nhạy cảm bức xạ. 1.3.5 Độ truyền năng lượng tuyến tính Năng lượng của bức xạ bị hấp thụ trong vật chất chưa đủ để đặc trưng cho hiệu ứng sinh học xảy ra trong vật chất. Thực nghiệm chỉ ra rằng các hiệu ứng sinh học phụ thuộc vào sự phân bố năng lượng đã bị hấp thụ trên đường đi của bức xạ trong vật chất. Để đặc trưng cho sự phân bố độ mất mát năng lượng bức xạ trên đường đi trong vật chất, người ta dùng khái niệm độ truyền năng lượng tuyến tính, ký hiệu là LET. Độ truyền năng lượng tuyến tính, được xác định theo công thức: dE LET  (1.42) dl
  19. trong đó dE là độ mất mát năng lượng trên quãng đường dl. Bảng 1.2. Giá trị LET trung bình trong nước của một số bức xạ ion hóa [2] LET Mật độ các ion Bức xạ Bức xạ gây ion hóa môi trường (KeV/m) /1m Tia X Electron thứ cấp 0,28 8,5 Gamma Electron thứ cấp 0,36 11 Tia X (30KeV-180KeV) Electron thứ cấp 3,2 100 Tia X 8 KeV Electron thứ cấp 4,7 145 Tia anpha 5,5 MeV Ion hóa trực tiếp 120 3700 Nơtron 12 MeV proton 3,5 290 Trong hệ SI, đơn vị đo độ truyền năng lượng tuyến tính là J/m hay keV/m Sự phân bố năng lượng hấp thụ của bức xạ trong vật chất còn phụ thuộc vào bản chất của mỗi loại bức xạ. Đối với bức xạ ion hóa gián tiếp, độ truyền năng lượng tuyến tính nhỏ hơn nhiều so với bức xạ ion hóa trực tiếp. 1.3.6 Liều giới hạn Khi tiếp xúc với các chất phóng xạ hay nguồn phóng xạ, các bức xạ ion hoá, các nhân viên công tác bị chiếu xạ và nhận được một liều hấp thụ nào đó. Tùy thuộc vào liều hấp thụ mà nhân viên nhận được, bức xạ hạt nhân sẽ ảnh hưởng khác nhau đến họ. Để đảm bảo sức khỏe cho nhân viên làm việc, cần phải giảm ảnh hưởng của các bức xạ. Về mặt an toàn bức xạ hạt nhân, cần đưa ra những quy định cụ thể về liều hấp thụ cho phép mà người nhân viên còn có thể làm việc trực tiếp với nguồn phóng xạ hay bức xạ ion hóa. Liều giới hạn được hiểu là giá trị lớn nhất của liều hấp thụ tích lũy trong một năm mà người làm việc trực tiếp với bức xạ hạt nhân có thể chịu được, không ảnh hưởng đến sức khỏe của bản thân [1], [2] ,[6]. Theo quy định chung về luật lao động, người có độ tuổi từ 18 tuổi trở lên mới được làm việc trong cơ sở sử dụng bức xạ hạt nhân. ICRP đã khuyến cáo công thức tính liều hấp thụ tích lũy cho phép trong một năm đối với nhân viên chuyên nghiệp làm việc trực tiếp với nguồn phóng xạ [2]: D = 50 (N-18) nSv hay D = 5(N-18) rem (1.43) Trong đó N là tuổi của nhân viên chuyên nghiệp N19, D là liều hấp thụ tích lũy trong một năm Bảng 1.3 Giới hạn liều hấp thụ tích lũy cho phép đối với người làm việc với bức xạ [3] Giới hạn liều Thời gian đề nghị Cơ quan đề nghị 150 mSv/năm 1950 ICRP 50 mSv/năm 1977 ICRP 20 mSv/năm 1990 ICRP
  20. Theo Pháp lệnh An toàn và Kiểm soát bức xạ hạt nhận của Việt Nam [8], liều hấp thụ tương đương cho toàn thân đối với nhân nhiên làm việc với nguồn bức xạ và bức xạ hạt nhân là 20mSv/năm. Trong 5 năm có một năm có thể lên đến 50mSv nhưng tổng liều trong 5 năm liên tục không được vượt quá 100mSv. Quy định này phù hợp với quy định của Ủy ban An Toàn Bức xạ Quốc tế 1.4. HIỆU ỨNG SINH HỌC CỦA BỨC XẠ Khi bức xạ xuyên vào trong các mô tế bào của cơ thể sống, nó tương tác chủ yếu thông qua quá trình ion hóa. Kết quả của quá trình ion hóa trong tế bào là tạo ra các cặp ion có khả năng phá hoại cấu trúc phân tử của các tế bào, làm tế bào bị biến đổi hoặc bị tiêu diệt [7]. Đối với con người, cấu tạo mô cơ thể chủ yếu là nước. Khi bị chiếu xạ, phân tử H2O bị ion hóa, phân chia thành các cặp H+ và OH-, các ion này bị kích thích lại tạo ra các ion khác…Năng lượng của bức xạ khi đi qua cơ thể người càng lớn thì số lượng ion tạo ra càng nhiều. Các ion này gây ra phản ứng rất mạnh, tác động trực tiếp tới các phân tử sinh học phổ biến là protein, lipit, ADN làm cho cấu trúc của các phân tử này bị sai hỏng gây ra những hậu quả: kìm hãm hoặc ngăn cản sự phân chia tế bào, làm sai sót nhiễm sắc thể dẫn tới việc tế bào bị chết hoặc bị biến đổi chức năng hoặc gây đột biến gen, đó là do các tổn thương sau đó có thể làm mất hoặc sắp xếp lại các vật chất di truyền trên phân tử ADN, làm chết tế bào. Trong đó quá trình làm chết tế bào là quá trình quan trọng nhất trong việc điều trị ung thư. Các tác dụng sinh học do tia xạ tạo ra kéo dài rất nhiều so với thời gian hấp thụ năng lượng. Quá trình hấp thụ năng lượng diễn ra trong khoảng 10-10 s còn các hiệu ứng sinh học kéo dài từ vài giây đến vài năm.Tùy theo liều lượng bức xạ mà cơ thể hấp thụ ít hay nhiều mà các biến đổi của các tế bào có thể phục hồi được hay không. Và với cùng một liều lượng bức xạ, nếu hấp thụ làm nhiều lần thì các biến đổi bệnh lí ít xảy ra với các mô tế bào hơn là hấp thụ trong một lần. Sau khi bị chiếu xạ, các tổn thương của tế bào có thể phục hồi. Kết quả nghiên cứu cho thấy, các tế bào bình thường (các tế bào lành) có khả năng phục hồi nhanh hơn các tế bào ung thư. Khi chiếu một liều lượng phù hợp thì có thể tiêu diệt được các tế bào ung thư còn các tế bào lành vẫn có thể phục hồi lại được [4,5]. Người ta xây dựng được biểu đồ sự phụ thuộc của xác suất tiêu diệt tế bào theo liều chiếu có dạng cơ bản như hình 1.6.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2