Lý thuyết và bài tập chương dao động cơ học

Chia sẻ: hoangngoc72007

Tóm tắt kiến thức. I. Dao động điều hòa 1. Dao động cơ Dao động là chuyển động có giới hạn trong không gian, lặp đi lặp lại nhiều lần quanh một vị trí cân bằng. 2. Dao động tuần hoàn: là dao động mà sau những khoảng thời gian bằng nhau gọi là chu kỳ vật trở lại vị trí cũ theo hướng cũ 3. Dao động điều hoà Dao động điều hòa là dao động trong đó li độ của vật là một hàm côsin (hay sin) của thời gian.....

Bạn đang xem 10 trang mẫu tài liệu này, vui lòng download file gốc để xem toàn bộ.

Nội dung Text: Lý thuyết và bài tập chương dao động cơ học

Chương I: DAO ĐỘNG CƠ HỌC
A. Tóm tắt kiến thức.
I. Dao động điều hòa
1. Dao động cơ
Dao động là chuyển động có giới hạn trong không gian, lặp đi lặp lại nhiều lần quanh một vị trí cân bằng.
2. Dao động tuần hoàn: là dao động mà sau những khoảng thời gian bằng nhau gọi là chu kỳ vật trở lại vị
trí cũ theo hướng cũ
3. Dao động điều hoà
Dao động điều hòa là dao động trong đó li độ của vật là một hàm côsin (hay sin) của thời gian..
a. Phương trình
phương trình x=Acos(ω t+ϕ ) thì:
+ x : li độ của vật ở thời điểm t (tính từ VTCB)
+A: gọi là biên độ dao động: là li độ dao động cực đại ứng với cos(ω t+ϕ) =1.
+(ω t+ϕ): Pha dao động (rad)
+ ϕ : pha ban đầu.(rad)
+ ω : Gọi là tần số góc của dao động.(rad/s)
b. Chu kì (T):
C1 : Chu kỳ dao động tuần hoàn là khoảng thời gian ngắn nhất T sau đó trạng thái dao động lặp lại như cũ.
C2: chu kì của dao động điều hòa là khoản thời gian vật thực hiện một dao động .
c. Tần số (f)
Tần số của dao động điều hòa là số dao động toàn phần thực hiện được trong một giây .

f= =
T 2π
T= t/n
n là số dao động toàn phần trong thời gian t
c. Tần số góc: kí hiệu là ω , đơn vị : rad/s

Biểu thức : ω= =2πf
T
4. Vận tốc
v = x/ = -Aω sin(ω t + ϕ ),
- vmax=Aω khi x = 0-Vật qua vị trí cân bằng.
- vmin = 0 khi x = ± A ở vị trí biên
KL: vận tốc trễ pha π / 2 so với ly độ.
5. Gia tốc .
a = v/ = -Aω 2cos(ω t + ϕ )= -ω 2x
- |a|max=Aω 2 khi x = ± A - vật ở biên
- a = 0 khi x = 0 (VTCB) khi đó Fhl = 0 .
- Gia tốc luôn hướng ngược dấu với li độ (Hay véc tơ gia tốc luôn hướng về vị trí cân bằng)
KL: Gia tốc luôn luôn ngược chiều với li độ và có độ lớn tỉ lệ với độ lớn của li độ.
6. Hệ thức độc lập:
v
A2 = x 2 + ( ) 2
ω
2
a = -ω x
1
7. Cơ năng: W = Wđ + Wt = mω A
2 2

2
1 2 1
Với Wđ = mv = mω A sin (ωt + ϕ ) = Wsin (ωt + ϕ )
2 2 2 2

2 2

1
1 1
Wt = mω 2 x 2 = mω 2 A2 cos 2 (ωt + ϕ ) = Wco s 2 (ωt + ϕ )
2 2
Dao động điều hoà có tần số góc là ω , tần số f, chu kỳ T. Thì động năng và thế năng biến thiên với tần số
góc 2ω , tần số 2f, chu kỳ T/2
W 1
Động năng và thế năng trung bình trong thời gian nT/2 ( n∈N*, T là chu kỳ dao động) là: = mω 2 A2
2 4
II. Con lắc lò xo
* Cấu tạo
+ một hòn bi có khối lượng m, gắn vào một lò xo có khối lượng không đáng kể
+ lò xo có độ cứng k
k
 m
F ∆l
-A
-A
nén

∆l ∆l
O x O giãn O
giãn
A
(Con lắc lò xo nằm ngang) A
x
x
(A < ∆l) (A > ∆l)


(con lắc lò xo treo thẳng đứng)
k 2π m 1 ω 1 k
1. Tần số góc: ω = ; chu kỳ: T = = 2π ; tần số: f = = =
m ω k T 2π 2π m
Điều kiện dao động điều hoà: Bỏ qua ma sát, lực cản và vật dao động trong giới hạn đàn hồi
1 1 2
2. Cơ năng: W = mω A = kA
2 2

2 2
3. Độ biến dạng của lò xo thẳng đứng khi vật ở VTCB:
mg ∆l
∆l = ⇒T = 2π
k g
+ Độ biến dạng của lò xo khi vật ở VTCB với con lắc lò xo nằm trên mặt phẳng nghiêng có góc nghiêng α
(dành cho ban nâng cao)
mg sin α ∆l
∆l = ⇒T = 2π
k g sin α

+ Chiều dài lò xo tại VTCB: lCB = l0 + ∆ l (l0 là chiều dài tự nhiên)
+ Chiều dài cực tiểu (khi vật ở vị trí cao nhất): lMin = l0 + ∆ l – A
+ Chiều dài cực đại (khi vật ở vị trí thấp nhất): lMax = l0 + ∆ l + A
⇒ lCB = (lMin + lMax)/2
Q
4. Lực kéo về hay lực hồi phục F = -kx = -mω 2x
Đặc điểm: * Là lực gây dao động cho vật.
* Luôn hướng về VTCB α
* Biến thiên điều hoà cùng tần số với li độ
III. Con lắc đơn
* Cấu tạo gồm : M
O
s s0 2
+ một vật nặng có kích thước nhỏ, có khối lượng m, treo ở đầu một sợi dây
+ sợi dây mềm khụng dón có chiều dài l và có khối lượng không đáng kể.
g 2π l 1 ω 1 g
1. Tần số góc: ω = ; chu kỳ: T = = 2π ; tần số: f = = =
l ω g T 2π 2π l

Điều kiện dao động điều hoà: Bỏ qua ma sát, lực cản và α0 T ⇒ S2 = 4A − x 2 − x1

 2
 v1 > 0 ⇒ S2 = 2A − x1 − x 2
* Nếu v1v2 < 0 ⇒  v < 0 ⇒ S = 2A + x + x
 1 2 1 2

Lưu ý : + Tính S2 bằng cách định vị trí x1, x2 và chiều chuyển động của vật trên trục Ox
+ Trong một số trường hợp có thể giải bài toán bằng cách sử dụng mối liên hệ giữa dao động điều
hòa và chuyển động tròn đều sẽ đơn giản hơn.
S
+ Tốc độ trung bình của vật đi từ thời điểm t1 đến t2: v tb = với S là quãng đường tính như trên.
t 2 − t1
Ví dụ :
1. Một con lắc lò xo dao động điều hòa với phương trình : x = 12cos(50t − π/2)cm. Quãng đường vật đi được
11
trong khoảng thời gian t = π/12(s), kể từ thời điểm gốc là : (t = 0)
A. 6cm. B. 90cm. C. 102cm. D. 54cm.
HD : Cách 1 :
x0 = 0
− tại t = 0 :  v > 0 ⇒ Vật bắt đầu dao động từ VTCB theo chiều dương
 0
 x = 6cm
− tại thời điểm t = π/12(s) :  Vật đi qua vị trí có x = 6cm theo chiều dương. B′ x0 x B x
v > 0 O
t − t0 t π.25 1 T π 2π 2π π
− Số chu kì dao động : N = = = = 2 + ⇒ t = 2T + = 2T + s. Với : T = = = s
T T 12.π 12 12 300 ω 50 25
− Vậy thời gian vật dao động là 2T và Δt = π/300(s)
− Quãng đường tổng cộng vật đi được là : St = SnT +SΔt
Với : S2T = 4A.2 = 4.12.2 = 96m.
 v1v 2 ≥ 0

Vì  T ⇒ SΔt = x − x 0 = 6 − 0 = 6cm B′ x0 x B x
 ∆t < 2
 O
π
− Vậy : St = SnT +SΔt = 96 +6 = 102cm. Chọn : C.
6
Vận dụng :
1. Một con lắc lò xo dao động điều hòa với phương trình : x = 6cos(20t + π/3)cm. Quãng đường vật đi được
trong khoảng thời gian t = 13π/60(s), kể từ khi bắt đầu dao động là :
A. 6cm. B. 90cm. C. 102cm. D. 54cm.
2. Một con lắc lò xo dao động điều hòa với biên độ 6cm và chu kì 1s. Tại t = 0, vật đi qua VTCB theo chiều
âm của trục toạ độ. Tổng quãng đường đi được của vật trong khoảng thời gian 2,375s kể từ thời điểm
được chọn làm gốc là :
A. 56,53cm B. 50cm C. 55,77cm D. 42cm
3. Một vật dao động với phương trình x = 4 2 cos(5πt − 3π/4)cm. Quãng đường vật đi từ thời điểm t1 =
1/10(s) đến t2 = 6s là :A. 84,4cm B. 333,8cm C. 331,4cm D. 337,5cm
Dạng 6 – Xác định thời gian ngắn nhất vật đi qua ly độ x1 đến x2
1 − Kiến thức cần nhớ : (Ta dùng mối liên hệ giữa DĐĐH và CĐTĐ đều để tính)
Khi vật dao động điều hoà từ x1 đến x2 thì tương ứng với vật chuyển động tròn đều từ M đến N(chú ý x1 và
x2 là hình chiếu vuông góc của M và N lên trục OX
Thời gian ngắn nhất vật dao động đi từ x1 đến x2 bằng thời gian vật chuyển động tròn đều từ M đến N
 x1
ϕ −ϕ ·
∆ϕ MON cos ϕ1 = A
 N ∆ϕ
M
tMN = Δt = 2 1 = = T với  và ( 0 ≤ ϕ1 , ϕ2 ≤ π )
ω ω 360 cos ϕ = x 2 ϕ2 ϕ1


2
A −A A x
x2 x1
2 – Phương pháp : O
* Bước 1 : Vẽ đường tròn có bán kính R = A (biên độ) và trục Ox nằm ngang
N'
x 0 = ?
* Bước 2 : – Xác định vị trí vật lúc t = 0 thì  M'
 v0 = ?
– Xác định vị trí vật lúc t (xt đã biết)
* Bước 3 : ·
Xác định góc quét Δφ = MOM ' = ?
∆ϕ ∆ϕ
* Bước 4 : t= = T
ω 3600
Bài tập :
Ví dụ :
1. Vật dao động điều hòa có phương trình : x = Acosω t. Thời gian ngắn nhất kể từ lúc

12
bắt đầu dao động đến lúc vật có li độ x = −A/2 là :
A. T/6(s) B. T/8(s). C. T/3(s). D. T/4(s).
HD : − tại t = 0 : x0 = A, v0 = 0 : Trên đường tròn ứng với vị trí M
− tại t : x = −A/2 : Trên đường tròn ứng với vị trí N
− Vật đi ngược chiều +quay được góc Δφ = 1200 = π.
∆ϕ ∆ϕ
−t= = T = T/3(s) Chọn : C
ω 3600
2. Vật dao động điều hòa theo phương trình : x = 4cos(8πt – π/6)cm. Thời gian ngắn nhất vật đi từ x1 = –
2 3 cm theo chiều dương đến vị trí có li độ x1 = 2 3 cm theo chiều dương là :
A. 1/16(s). B. 1/12(s). C. 1/10(s) D. 1/20(s)
HD : Tiến hành theo các bước ta có :
− Vật dao động điều hòa từ x1 đến x2 theo chiều dương tương ứng vật CĐTĐ từ M đến N
− Trong thời gian t vật quay được góc Δφ = 1200.
− Vậy : t = 1/12(s) Chọn : B
Vận dụng :
1. Một vật dao động điều hòa với chu kì T = 2s. Thời gian ngắn nhất để vật đi từ điểm M có li độ x = + A/2
đến điểm biên dương (+ là A. 0,25(s).
A) B. 1/12(s) C. 1/3(s).
D. 1/6(s).
2. (Đề thi đại học 2008) một con lắc lò xo treo thẳng đứng. Kích thích cho con lắc dao động điều hòa theo
phương thẳng đứng. Chu kì và biên độ của con lắc lần lượt là 0,4s và 8cm. Chọn trục x’x thẳng đứng chiều
dương hướng xuống, gốc tọa độ tại VTCB, gốc thời gian t = 0 vật qua VTCB theo chiều dương. Lấy gia tốc
rơi tự do g = 10m/s2 và π2= 10. thời gian ngắn nhất kể từ khi t = 0 đến lực đàn hồi của lò xo có độ lớn cực
tiểu là :
A 7/30s. B 1/30s. C 3/10s. D 4/15s.
3. Vật dao động điều hòa, gọi t1 là thời gian ngắn nhất vật đi từ VTCB đến li độ x = 0,5A và t 2 là thời gian
ngắn nhất vật đi từ li độ x = 0,5A đến biên. Ta có :
a. t1 = t2 b. t1 = 2t2 c. t1 = 0,5t2 d. t1 = 4t2
4. Vật dao động điều hoà. Thời gian ngắn nhất vật đi từ vị trí cân bằng đến li độ x = 0,5A là 0,1s. Chu kì
dao động của vật là:
a. 0,12s b. 0,4s c. 0,8s d. 1,2s
5. Một vật dao động điều hòa với chu kỳ T và biên độ A. Hãy tính khoảng thời gian ngắn nhất để vật đi từ
vị trí có ly độ
a) x1 = A đến x2 = A/2 b) x1 = A/2 đến x2 = 0 c) x1 = 0 đến x2 = -A/2 d) x1 = -A/2 đến x2 = -A
3 2
e) x1 = A đến x2 = A f) x1 = A đến x2 = A g) x1 = A đến x2 = -A/2
2 2




13
BÀI 1. DAO ĐỘNG ĐIỀU HÒA
1. Trong dao động điều hòa của chất điểm, chất điểm đổi chiều chuyển động khi
A. lực tác dụng đổi chiều. B. lực tác dụng bằng không.
C. lực tác dụng có độ lớn cực đại. D. lực tác dụng có độ lớn cực tiểu.
2. Một vật dao động điều hòa theo phương trình: x = Acos(ωt + ϕ ) . Vận tốc của vật tại thời điểm t có
biểu thức:
A. v = Aω cos(ωt + ϕ ) B. v = Aω 2cos(ωt + ϕ ) .
C. v = − Aωsin(ωt + ϕ ) D. v = − Aω 2sin(ωt + ϕ ) .
3. Một vật dao động điều hòa theo phương trình: x = Acos(ωt ) Gia tốc của vật tại thời điểm t có biểu
thức:
A. a = Aωcos(ωt + π ) B. a = Aω 2 cos(ωt + π )
C. a = Aω sin ωt D. a = − Aω 2 sin ωt
4. Trong dao động điều hòa, giá trị cực đại của vận tốc là:
A. v max = ωA . B. v max = ω A C. v max = −ωA D. v max = −ω A
2 2


5. Trong dao động điều hòa, giá trị cực đại của gia tốc là:
A. a max = ωA B. a max = ω 2 A C. a max = −ωA D. a max = −ω A
2


6. Chọn câu đúng khi nói về dao động điều hòa của một vật.
A. Li độ dao động điều hòa của vật biến thiên theo định luật hàm sin hoặc cosin theo thời gian.
B. Tần số của dao động phụ thuộc vào cách kích thích dao động.
C. Ở vị trí biên, vận tốc của vật là cực đại.
D. Ở vị trí cân bằng, gia tốc của vật là cực đại.
7. Trong dao động điều hòa:
A. Vận tốc biến đổi điều hòa cùng pha với li độ.
B. Vận tốc biến đổi điều hòa ngược pha với li độ.
π
C. Vận tốc biến đổi điều hòa sớm pha so với li độ.
2
π
D. Vận tốc biến đổi điều hòa chậm pha so với li độ.
2
π
8. Một chất điểm dao động điều hòa với phương trình: x = 6 sin(πt + ). cm.
2
Tại thời điểm t = 0,5s chất điểm có li độ là bao nhiêu ?
14
A. 3 cm B. 6cm C. 0 cm D. 2cm.
9. Một vật dao động điều hòa với phương trình x = 6 cos(4πt )cm vận tốc của vật tại thời điểm t = 7,5s là:
A. v = 0 B. v = 75,4cm / s C. v = −75,4cm / s D. v = 6cm / s
10. Một chất điểm dao động điều hòa với phương trình: x = 5 cos(2πt ) cm.
Tọa độ của chất điểm tại thời điểm t = 1,5s là:
A. x = 1,5cm . B. x = −5cm . C. x = 5cm . D. x = 0cm .
11. Vật dao động điều hòa theo phương trình: x = 6 cos(4πt ) cm.
Tọa độ của vật tại thời điểm t = 10s là:
A. 3cm . B. 6cm C. − 3cm D. − 6cm
12. Một vật dao động điều hòa theo phương trình: x = 8 2 cos(20πt + π ) cm.
π
Khi pha của dao động là − thì li độ của vật là:
6
A. − 4 6cm . B. 4 6cm C. 8cm D. − 8cm
π
13. Một vật thực hiện dao động điều hòa xung quanh vị trí cân bằng theo phương trình: x = 2cos(4π t + )
2
(cm). Chu kỳ của dao động là
1
A. T = 2( s ) B. T = ( s) C. T = 2π ( s ) D. T = 0,5( s)

π π
14. Một chất điểm dao động điều hòa với phương trình: x = 6 cos( t + ) cm. Tại thời điểm t = 1s li độ
2 3
của chất điểm có giá trị nào trong các giá trị sau:
A. 3cm B. 3 3cm C. 3 2cm D. − 3 3cm
π
15. Một chất điểm dao động điều hòa với phương trình x = 6 cos(πt + ) cm. Tại thời điểm
2
t = 0,5s chất điểm có vận tốc nào trong các vận tốc dưới đây ?
A. 3πcm / s B. − 3πcm / s C. 0cm / s D. 6πcm / s
π
16. Phương trình dao động điều hòa của một vật là: x = 3cos(20t + ) cm . Vận tốc của vật có độ lớn cực
3
đại là
A. vmax = 3 (m / s ) B. vmax = 6 (m / s) C. vmax = 0, 6 (m / s) D. vmax = π (m / s )
π
17. Một vật dao động điều hòa với phương trình x = 6 cos(10πt − ) cm. Lúc t = 0,2s vật có li độ và vận tốc
6
là:
A. − 3 3cm ; 30πcm / s B. 3 3cm ; 30πcm / s
C. 3 3cm ; − 30πcm / s D. − 3 3cm ; − 30πcm / s
π
18. Một vật dao động điều hòa có phương trình x = 4 cos(2πt + ) cm. Lúc t = 0,25s vật có li độ và vận tốc
4
là:
A. 2 2cm ; v = −8π 2cm / s B. 2 2cm ; v = 4π 2cm / s
C. − 2 2cm ; v = −4π 2cm / s D. − 2 2cm : v = 8π 2cm / s
π
19. Một vật dao động điều hòa có phương trình x = 4 cos(2πt + ) cm. Lúc t = 0,5s vật có li độ và gia tốc
4
là:
A. − 2 2cm ; a = 8π 2 2cm / s 2 B. − 2 2cm ; a = −8π 2 2cm / s 2
C. − 2 2cm ; a = −8π 2 2cm / s 2 D. 2 2cm ; a = 8π 2 2cm / s 2
15
π
20. Một vật dao động điều hòa có phương trình x = 4 cos(2πt + ) cm. Lúc t = 1s vật có vận tốc và gia tốc
4
là:
A. − 4 2πcm / s ; a = 8π 2 2cm / s 2 B. − 4 2πcm / s ; a = −8π 2 2cm / s 2
C. 4 2πcm / s ; a = −8π 2 2cm / s 2 D. 4 2πcm / s ; a = 8π 2 2cm / s 2
21. Một chất điểm dao động điều hòa theo phương trình x = 5 cos(2πt + ϕ ) cm. Chu kỳ dao động của chất
điểm là:
A. T = 1s B. T = 2 s C. T = 0,5s D. T = 1Hz
22. Một vật dao động điều hòa theo phương trình x = 6 cos(4πt + ϕ ) cm. Tần số doa động của vật là:
A. f = 6 Hz B. f = 4 Hz C. f = 2 Hz D. f = 0,5 Hz
23. Một vật dao động điều hòa theo phương trình x = 8 2 sin( 20πt + π ) cm. Tần số và chu kỳ dao động của
vật là:
A. 10 Hz ; 0,1s B. 210 Hz ; 0,05s C. 0,1Hz ; 10 s D. 1,05Hz ; 20 s
24. Một vật dao động điều hòa với biên độ A = 20cm. Khi vật có li độ x = 10cm thì nó có vận tốc
v = 20π 3cm / s . Chu kỳ dao động của vật là:
A. 1s B. 0,5s C. 0,1s D. 5s
25. Một vật dao động điều hòa trên đoạn thẳng 40cm. Khi vật có li độ x = -10cm thì nó có vận tốc
v = 10π 3cm / s . Chu kỳ dao động của vật là:
A. 2 s B. 0,5s C. 1s D. 5s
26. Một vật dao động điều hòa với biên độ 5 cm. Khi vật có li độ 3 cm thì vận tốc của nó là 2π m / s . Tần
số dao động của vật là
A. 25 Hz B. 0,25 Hz C. 50 Hz D. 50 π Hz
27. Một vật dao động điều hòa với biên độ A = 4cm và chu kỳ T = 2s. Chọn gốc thời gian là lúc vật qua vị trí
cân bằng theo chiều dương. Phương trình dao động của vật là:
π π
A. x = 4 cos(2πt − ) cm. B. x = 4 cos(πt − ) cm.
2 2
π π
C. x = 4 cos(2πt + ) cm. D. x = 4 cos(πt + ) cm.
2 2
28. Một vật dao động điều hòa với biên độ A = 12cm và chu kỳ T = 1s. Chọn gốc thời gian là lúc vật qua vị
trí cân bằng theo chiều âm. Phương trình dao động của vật là:
π
A. x = −12 cos(2πt ) cm. B. x = 12 cos(2πt − ) cm.
2
π π
C. x = −12 cos(2πt + ) cm. D. x = 12 cos(2πt + ) cm.
2 2
29. Một vật dao động điều hòa với biên độ A = 10cm và tần số f = 2 Hz. Chọn gốc thời gian là lúc nó có li
độ cực đại dương. Kết quả nào sau đay là sai ?
A. Tần số góc: ω = 4πrad / s .
B. Chu kỳ: T = 0,5s.
C. Pha ban đầu: ϕ = 0 .
π
D. Phương trình dao động: x = 10 cos(4πt − ) cm.
2
30. Một vật dao động điều hòa với tần số góc ω = 10 5 rad / s . Tại thời điểm t = 0 vật có li độ x = 2cm và
có vận tốc v = −2 15 cm / s . Phương trình dao động của vật là:
2π 2π
A. x = 2 cos(10 5t + ) cm. B. x = 2 cos(10 5t − ) cm.
3 3

16
π π
C. x = 4 cos(10 5t − ) cm. D. x = 4 cos(10 5t + ) cm.
3 3
31. Một vật dao động điều hòa với tần số góc ω = 10 5 rad / s . Tại thời điểm t = 0 vật có li độ x = 2cm và
có vận tốc v = 2 15 cm / s . Phương trình dao động của vật là:
π π
A. x = 2 cos(10 5t − ) cm. B. x = 4 cos(10 5t − ) cm.
3 3
π π
C. x = 4 cos(10 5t + ) cm. D. x = 2 cos(10 5t + ) cm.
6 6
32. Một vật dao động điều hòa với chu kỳ 0,2 s. Khi vật cách vị trí cân bằng 2 2 cm thì có vật tốc
20 2π cm / s . Chọn gốc thời gian lúc vật qua vị trí cân bằng theo chiều âm thì phương trình dao dộng của
vật là:
π π
A. x = 4 2 cos(10πt + ) cm. B. x = 4 2 cos(10πt − ) cm.
2 2
π π
C. x = 4 sin(10πt − ) cm. D. x = 4 cos(10πt + ) cm.
2 2
33. Một vật có khối lượng m dao dộng điều hòa theo phương ngang với chu kỳ T = 2s. Vật qua vị trí cân
bằng với vận tốc v 0 = 31,3cm / s = 10πcm / s . Chọn gốc thời gian lúc vật qua vị trí cân bằng theo chiều
dương. Phương trình dao động của vật là:
π π
A. x = 10 sin(10πt − ) cm. B. x = 10 sin(10πt + ) cm.
2 2
π π
C. x = 5 sin(10πt − ) cm. D. x = 5 sin(10πt + ) cm.
2 2
π
34. Phương trình dao động của một con lắc x = 4 cos(2πt + ) cm. Thời gian ngắn nhất để hòn bi đi qua vị
2
trí cân bằng tính từ lúc bắt đầu dao động t = 0 là:
A. 0,25s B. 0,75s C. 0,5s D. 1,25s
35. Vật dao động điều hòa theo phương trình x = 5cos(π t ) cm sẽ đi qua vị trí cân bằng lần thứ 3 (kể từ lúc
t = 0) vào thời điểm:
A. t = 2,5( s ) B. t = 1,5( s) C. t = 4( s) D. t = 42( s)
2π A
36. Chất điểm dao đông điều hòa x = A cos(π t − ) cm. sẽ đi qua vị trí có li độ x = lần thứ hai kể từ lúc
3 2
bắt đầu dao động vào thời điểm:
1 7
A. 1( s) B. ( s ) C. 3( s) D. ( s )
3 3

BÀI 2. CON LẮC LÒ XO
1. Phát biểu nào sau đây là không đúng với con lắc lò xo nằm ngang ?
A. Chuyển động của vật là chuyển động thẳng.
B. Chuyển động của vật là chuyển động biến đổi đều.
C. Chuyển động của vật là chuyển động tuần hoàn.
D. Chuyển động của vật là một dao động điều hòa.
2. Con lắc lò xo gồm vật có khối lượng m và lò xo có độ cứng k, dao động điều hòa với chu kỳ:
m k l g
A. T = 2π B. T = 2π C. T = 2π D. T = 2π
k m g l
3. Công thức nào sau đây được dùng để tính tần số dao động của con lắc lò xo ?

17
1 k 1 m 1 m k
A. f = B. f = C. f = D. f = 2π
2π m 2π k π k m
4. Một con lắc lò xo gồm lò xo có độ cứng k treo quả nặng có khối lượng m. Hệ dao động với chu kỳ T.
Độ cứng của lò xo là:
2π 2 m 4π 2 m π 2m π 2m
A. k = B. k = C. k = D. k =
T2 T2 4T 2 2T 2
5. Một quả cầu khối lượng m treo vào một lò xo có độ cứng k ở nơi có gia tốc trọng trường g làm lò xo
dãn ra một đoạn ∆l . Kéo vật ra khỏi vị trí cân bằng theo phương thẳng đứng rồi thả nhẹ.
Chu kì dao động của vật có thể tính theo biểu thức nào trong các biểu thức sau đây ?
k ∆l k m
A. T = 2π B. T = 2π C. T = 2π D. T = 2π
m g m k
6. Một con lắc gồm vật năng treo dưới một lò xo có chu kỳ dao động là T. Chu kỳ dao động của con lắc đó
khi lò xo bị cắt bớt đi một nữa là T’. Chọn đáp án đúng trong những đáp án sau ?
T T
A. T ' = B. T ' = 2T C. T ' = T 2 D. T ' =
2 2
7. Gắn một vật nặng vào lò xo được treo thẳng đứng làm lò xo dãn ra 6,4 cm khi vật nặng ở vị trí cân
bằng. Cho g = 10m / s 2 . Chu kỳ dao động của vật nặng là:
A. 5s B. 0,5s C. 2s D. 0,2s.
8. Con lắc lò xo dao động điều hòa, khi tăng khối lượng của vật lên 4 lần thì tần số dao động của vật
A. tăng lên 4 lần. B. giảm đi 4 lần C. tăng lên 2 lần. D. giảm đi 2 lần
9. Con lắc lò xo gồm một vật m và lò xo có độ cứng k dao động điều hòa, khi mắc thêm vào vật m một vật
khác có khối lượng gấp 3 lần vật m thì chu kỳ dao động của chúng
A. tăng lên 3 lần B. giảm đi 3 lần C. tăng lên 2 lần. D. giảm đi 2 lần
10. Gắn một vật vào lò xo dược treo thẳng đứng làm lò xo dãn ra 6,4 cm khi vật nặng ở vị trí cân bằng. Cho
g = 10m / s 2 . Tần số dao động của vật nặng là:
A. 0,2 Hz B. 2 Hz C. 0,5 Hz D. 5 Hz.
11. Vật có khối lượng m = 2 kg treo vào một lò xo. Vật dao động điều hòa với chu kỳ T = 0,5 s. Cho g = π 2 .
Độ biến dạng của lò xo khi vật ở vị trí cân bằng là
A. 6,25 cm B. 0,625 cm C. 12,5 cm D. 1,25 cm
12. Một lò xo được treo thẳng đứng, đầu trên cố định còn đầu dưới gắn quả nặng. Quả nặng ở vị trí cân
bằng khi lò xo dãn 1,6 cm. Lấy g = 10 m/s2. Chu kỳ dao động điều hòa của vật bằng
π
A. 0,04 (s) B. 2π / 25 ( s ) C. ( s) D. 4 (s)
25
13. Một con lắc lò xo gồm vật nặng khối lượng 100g gắn vào đầu lò xo có độ cứng 100N/m. Kích thích vật
dao động. Trong quá trình dao động , vật có vận tốc cực đại bằng 62,8 cm/s. Lấy π 2 = 10 . Biên độ dao
động của vật là:
A. 2cm . B. 2cm . C. 4cm . D. 3,6cm .
14. Một con lắc là xo gồm một quả cầu nhỏ có khối lượng m = 100 g gắn với lò xo dao động điều hòa trên
phương ngang theo phương trình: x = 4cos(10t + ϕ ) (cm). Độ lớn cực đại của lực kéo về là
A. 0, 04N B. C. 4N D. 40N
15. Con lắc lò xo dao động theo phương nằm ngang với biên độ A = 8 cm, chu kỳ T = 0,5s. Khối lượng của
vật là 0,4kg (lấy π 2 = 10 ). Giá trị cực đại của lực đàn hồi tác dụng vào vật là:
A. Fmax = 525 N B. Fmax = 5,12 N C. Fmax = 256 N D. Fmax = 2,56 N
π
16. Một vật có khối lượng 1 kg dao động điều hòa theo phương trình x = 10cos(π t − ) (cm) . Coi π 2 = 10 .
2
Lực kéo về ở thời điểm t = 0,5 s bằng
18
1
A. 2N B. 1N C. N D. 0N
2
17. Một con lắc lò xo có độ cứng k treo quả nặng có khối lượng m. Hệ dao động với biên độ A.
Giá trị cực đại của lực đàn hồi tác dụng vào quả nặng là:
mg mg
A. Fmax = k ( + 2 A) B. Fmax = k ( − A)
k k
mg 2mg
C. Fmax = k ( + A) D. Fmax = k ( + A)
k k
18. Một lò xo có k = 20 N/m treo thẳng đứng. Treo vào lò xo một vật có khối lượng m = 200g. Từ vị trí cân
bằng nâng vật lên một đoạn 5 cm rồi buông nhẹ. Lấy g = 10m / s 2 . Chiều dương hướng xuống dưới. Giá trị
cực đại của lực phục hồi và lực đàn hồi là:
A. 2N; 5N. B. 2N; 3N. C. 1N; 3N. D. 0,4N; 0,5N.
19. Một con lắc lò xo treo thẳng đứng, lò xo có độ cứng k = 100 N/m. Ở vị trí cân bằng lò xo dãn 4cm,
truyền cho vật một động năng 0,125 J vật bắt đầu dao động theo phương thẳng đứng. Lấy g = 10m / s 2 ,
π 2 = 10 . Chu kỳ và biên độ dao động của hệ là:
A. 0,4s, 5cm B. 0,2s, 2cm C. π s, 4cm D. π s, 5cm
20. Một con lắc lò xo gồm vật nặng khối lượng 0,4 kg gắn vào đầu lò xo có độ cứng 40N/m.
Khi kéo vật ra khỏi vị trí cân bằng một đoạn 4cm rồi thả nhẹ cho nó dao dộng. Phương trình dao động của
vật là
π
A. x = 4 cos(10t ) cm. B. x = 4 cos(10t − ) cm.
2
π π
C. x = 4 cos(10πt − ) cm. D. x = 4 cos(10πt + ) cm.
2 2
21. Một con lắc lò xo gồm quả nặng khối lượng 1 kg gắn vào đầu lò xo có độ cứng 1600 N/m. Khi quả
nặng ở vị trí cân bằng, người ta truyền cho nó vận tốc ban đầu bằng 2 m/s theo chiều dương trục tọa độ.
Phương trình li độ của quả nặng là:
π π
A. x = 5 cos(40t + ) cm. B. x = 0,5 cos(40t + ) cm.
2 2
π
C. x = 5 cos(40t − ) cm. D. x = 0,5 cos(40t ) cm.
2
22. Một con lắc lò xo treo thẳng đứng gồm một quả cầu nặng có khối lượng m = 1 kg và một lò xo có độ
cứng 1600 N/m. Khi quả cầu nặng ở vị trí cân bằng, người ta truyền cho nó một vận tốc 2 m/s hướng thẳng
đứng xuống dưới. Chọn gốc thời gian là lúc truyền vận tốc, gốc tọa độ là vị trí cân bằng chiều dương
hướng xuống dưới. Phương trình dao động nào sau đây là đúng ?
π
A. x = 0,5 cos(40t ) m B. x = 0,05 cos(40t + ) m.
2
π
C. x = 0,05 cos(40t − ) m. D. x = 0,05 2 cos(40t ) m
2
23. Một lò xo có khối lượng không đáng kể có độ cứng 100 N/m. Đầu trên cố định đầu dưới treo vật có
khối lượng 400g. Kéo vật xuống dưới vị trí cân bằng theo phương thẳng đứng một đoạn 2cm và truyền
cho nó vận tốc 10 5cm / s để nó dao động điều hòa. Bỏ qua ma sát.
Chọn gốc tọa độ ở vị trí cân bằng, chiều dương hướng xuống, gốc thời gian là lúc vật ở vị trí x = +1cm
và đang di chuyển theo chiều dương Ox. Phương trình dao động của vật là:
π π
A. x = 2 cos(5 10t − ) cm. B. x = 2 cos(5 10t + ) cm.
3 6
π π
C. x = 2 2 cos(5 10t + ) cm. D. x = 4 cos(5 10t + ) cm.
6 3
19
24. Một lò xo có khối lượng không đáng kể, đầu trên cố định, đầu dưới treo vật. Vật dao động điều hòa
theo phương thẳng đứng với tần số 4,5 Hz. Trong qua trình dao dộng, độ dài ngăn nhất của lò xo là 40cm và
dài nhất là 56 cm. Lấy g = 9,8m / s 2 . Chọn gốc tọa độ ở vị trí cân bằng, chiều dương hướng xuống, gốc
thời gian là lúc lò xo ngắn nhất. Phương trình dao động của vật là:
π
A. x = 8 2 cos(9πt − π ) cm. B. x = 8 cos(9πt + ) cm.
2
π
C. x = 8 cos(9πt + π ) cm. D. x = 8 2 cos(9πt − ) cm.
2
25. Năng lượng của con lắc lò xo tỉ lệ với bình phương của
A. khối lượng của vật nặng. B. độ cứng cảu lò xo.
C. chu kỳ dao động. D. biên độ dao động.
1
26. Một con lắc lò xo dao động với biên độ 6 cm. Xác định li độ của vật để thế năng của vật bằng động
3
năng của nó.
A. ± 3 2cm B. ± 3cm C. ± 2 2cm D. ± 2 2cm
27. Một con lắc lò xo dao động với biên độ 10 cm. Xác định li độ của vật để thế năng của vật bằng 3 động
năng của nó.
A. ± 5 2cm B. ± 3cm C. ± 3 5cm D. ± 5cm
28. Một con lắc lò xo dao động với biên độ 5cm. Xác định li độ của vật để thế năng của vật bằng động
năng của nó.
2,5
A. ± 5cm B. ± 2,5cm C. ± cm D. ± 2,5 2cm
2
29. Một vật gắn vào lò xo có độ cứng k = 20 N / m dao động trên quỹ đạo dài 10 cm. Xác định li độ dao dộng
của vật khi nó có động năng 0,009 J.
A. ± 4cm B. ± 3cm C. ± 2cm D. ± 1cm
30. Một vật có khối lượng m = 200g gắn vào lò xo có độ cứng k = 20 N / m dao động trên quỹ đạo dài 10 cm
Xác định li độ dao dộng của vật khi nó có vận tốc 0,3 m/s.
A. ± 1cm B. ± 3cm C. ± 2cm D. ± 4cm
31. Nếu một vật dao động điều hòa có chu kỳ dao động giảm 3 lần và biên độ giảm 2 hai lần thì tỉ số của
năng lượng của vật khi đó và năng lượng của vật lúc đầu là
9 4 2 3
A. B. C. D.
4 9 3 2
32. Một vật dao động điều hòa theo phương trình x = Acos(ωt + ϕ ). Tỉ số động năng và thế năng của vật tại
A
điểm có li độ x = là
3
A. 8 B. 1/8 C. 3 D. 2
33. Một vật dao động điều hòa theo phương trình x = 2cos(10t ) (cm) . Vận tốc của vật tại vị trí mà động
năng nhỏ hơn thế năng 3 lần là
A. 2 cm/s B. 10 m/s C. 0,1 m/s D. 20 cm/s
34. Một lò xo gồm một quả nặng khối lượng 1kg và một lò xo có độ cứng 1600 N/m. Khi quả nặng ở vị trí
cân bằng , người ta truyền cho nó vận tốc ban đầu bằng 2m/s. Biên độ dao động của quả nặng là:
A. A = 5m B. A = 5cm C. A = 0,125m D. A = 0,125cm
π
35. Một con lắc lò xo dao động với phương trình x = 2 cos(20πt + ) cm. Biết khối lượng của vật nặng là
2
m = 100g. Xác định chu kỳ và năng lượng của vật.
A. 0,1s , 78,9.10 −3 J B. 0,1s , 79,8.10 −3 J C. 1s , 7,89.10−3 J D. 1s , 7,98.10−3 J


20
π
36. Một vật động điều hòa xung quanh vị trí cân bằng theo phương trình x = Acos(ωt + ) , trong đó x tính
2
π
bằng cm, t tính bằng giây. Biểt rằng cứ sau những khoảng thời gian bằng ( s) thì động năng của vật lại
60
có giá trị bằng thế năng. Chu kỳ dao động của vật là
π π π π
A. (s) B. ( s) C. (s) D. ( s)
15 60 20 30
37. Năng lượng của một vật do động điều hòa
A. tăng 9 lần nếu biên độ tăng 1,5 lần và tần số tăng 2 lần.
B. giảm 9 lần nếu biên độ giảm 1,5 lần và tần số tăng 2 lần.
9
C. giảm lần nếu tần số 3 lần và biên độ giảm 9 lần.
4
D. giảm 6,25 lần nếu tầng số tăng 5 lần và biên độ dao động giảm 3 lần.
38. Một vật gắn vào lò xo có độ cứng k = 20 N / m dao động với biên độ A = 5cm. Khi vật nặng cách vị trí
biên 1cm nó có động năng là:
A. 0,025 J B. . 0,0016 J C. . 0,009 J D. . 0,041 J
39. Một vật dao động điều hòa với phương trình x = 2cos2π t (cm) . Các thời điểm (tính bằng đơn vị giây)
mà gia tốc của vật có độ lớn cực đại là
k
A. t = B. t = k C. t = 2k D. t = 2k + 1
2
40. Một con lắc lò xo dao động theo phương trình x = 2 cos(20πt ) cm . Vật qua vị trí x = +1cm vào những
thời điểm nào ?
1 k 1
A. t = ± + . B. t = ± + 2k .
60 10 20
1 1 k
C. t = ± + 2k D. t = + .
40 30 5
41. Một con lắc lò xo dao động điều hòa xung quanh vị trí cân bằng với biên độ A = 2,5 cm. Biết lò xo có độ
cứng k = 100 N/m và quả cầu có khối lượng 250 g. Lấy t = 0 là lúc vật qua vị trí cân bằng thì quãng đường
π
vật đi được trong ( s ) đầu tiên là
10
A. 2,5 cm B. 5 cm C. 7.5 cm D. 10 cm

BÀI 3. CON LẮC ĐƠN
1. Con lắc đơn gồm vật nặng có khối lượng m treo vào sợi dây có chiều dài l tại nơi có gia tốc trọng
trường g, dao động điều hòa với chu kỳ T phụ thuộc vào
A. l và g. B. m và l C. m và g. D. m, l và g
2. Con lắc đơn dao động điều hòa với chu kỳ
m k l g
A. T = 2π B. T = 2π C. T = 2π D. T = 2π .
k m g l
3. Phát biểu nào sau đây là sai ?
A. Chu kỳ dao động nhỏ của con lắc đơn tỉ lệ với căn bậc hai của chiều dài của nó.
B. Chu kỳ dao động của một con lắc đơn tỉ lệ nghịch với căn bậc hai của gia tốc trọng trường nơi con
lắc dao dộng.
C. Chu kỳ dao động của một con lắc đơn phụ thuộc vào biên độ.
D. Chu kỳ của con lắc đơn không phụ thuộc vào khối lượng.
4. Chu kỳ dao động nhỏ của con lắc đơn phụ thuộc
A. khối lượng của con lắc.
B. chiều dài của con lắc.
21
C. cách kích thích con lắc dao động.
D. biên độ dao động cảu con lắc.
5. Chu kỳ dao động nhỏ của con lắc đơn phụ thuộc
A. khối lượng của con lắc.
B. vị trí của con lắc đang dao động con lắc.
C. cách kích thích con lắc dao động.
D. biên độ dao động cảu con lắc.
6. Phát biểu nào sau đây với con lắc đơn dao động điều hòa là không đúng ?
A. Động năng tỉ lệ với bình phương tốc độ góc của vật.
B. Thế năng tỉ lệ với bình phương tốc độ góc của vật
C. Thế năng tỉ lệ với bình phương li độ góc của vật.
D. Cơ năng không đổi theo thời gian và tỉ lệ với bình phương biên độ góc.
7. Công thức nào sau đây được dùng để tính tần số dao động của con lắc đơn.
1 g 1 l 1 g 1 l
A. f = B. f = C. f = D. f =
2π l 2π g π l π g
8. Một con lắc đơn thả không vận tốc đầu từ vị trí có li độ α 0 . Khi con lắc đi qua vị trí α thì vận tốc cảu
con lắc được xác định bằng công thức nào dưới đây ?
2g
A. v = 2 gl (cos α − cos α 0 ) B. v = (cos α − cos α 0 )
l
g
C. v = 2 gl (cos α + cos α 0 ) D. v = (cos α − cos α 0 )
2l
9. Con lắc đơn dao động điều hòa, khi tăng chiều dài của con lắc lên 4 lần thì tần số dao động của con lắc
A. tăng lên 2 lần. B. giảm đi 2 lần. C. tăng lên 4 lần. B. giảm đi 4 lần.
10. Con lắc đếm dây có chiều dài 1m dao động với chu kỳ 2s. Tại cùng một vị trí thì con lắc đơn có độ dài
3m sẽ dao động với chu kỳ là:
A. T = 6 s B. T = 4,24 s C. T = 3,46s D. T = 1,5s
11. Một con lắc có chiều dài l1 dao động với chu kỳ T1 = 0,8s . Một con lắc đơn khác có chiều dài l2 dao
động với chu kỳ T2 = 0,6 s . Chu kỳ con lắc đơn có chiều dài l1 + l2 là :
A. T = 7 s B. T = 8s C. T = 1s D. T = 1,4s
12. Một con lắc có chiều dài l1 dao động với chu kỳ T1 = 1,2s . Một con lắc đơn khác có chiều dài l 2 dao động
với chu kỳ T2 = 1,6 s . Tần số của con lắc đơn có chiều dài l1 + l2 là :
A. f = 0,25 HZ B. f = 2,5 HZ C. f = 0,38 HZ D. f = 0,5 HZ
13. Con lắc có chiều dài l1 dao động với chu kỳ T1 = 1,2s . Một con lắc đơn khác có chiều dài l2 dao động với
chu kỳ T2 = 1,6 s . Chu kỳ của con lắc đơn có chiều dài bằng hiệu chiều dài của hai con lắc trên là:
A. T = 0,2s B. T = 0,4 s C. T = 1,06s D. T = 1,12s

14. Con lắc có chiều dài l1 dao động với tần số góc ω1 = rad / s , con lắc đơn khác có chiều dài l2 dao
3
π
động với tần số góc ω 2 = rad / s . Chu kỳ con lắc đơn có chiều dài l1 + l2 là :
2
A. T = 7 s B. T = 5s C. T = 3,5s D. T = 12 s
1
15. Con lắc có chiều dài l1 dao động với tần số f 1 = HZ , con lắc đơn khác có chiều dài l 2 dao động với
3
1
tần số f 2 = HZ . Tần số của con lắc đơn có chiều dài bằng hiệu hai độ dài trên là:
4
A. f = 0,29 HZ B. f = 1HZ C. f = 0,38 HZ D. f = 0,61HZ

22
A
16. Một con lắc đơn dao động với chu kỳ T = 3s. Thời gian ngắn nhất để con lắc đi từ vị trí x1 = − đế n vị
2
A
trí có li độ x1 = + là:
2
1 5 1 1
A. t = s B. t = s C. t = s D. t = s
6 6 4 2
17. Một con lắc đơn có chu kỳ dao động T = 4s. Thời gian để con lắc đi từ vị trí cân bằng đến vị trí có li độ
cực đại là:
A. t = 0,5s B. t = 1s C. t = 1,5s D. t = 2s
18. Một con lắc đơn có chu kỳ dao động T = 3s. Thời gian để con lắc đi từ vị trí cân bằng đến vị trí có li độ
A
x = là:
2
A. t = 0,25s B. t = 0,375s C. t = 0,75s D. t = 1,5s
A
19. Một con lắc đơn có chu kỳ dao động T = 3s. Thời gian để con lắc đi từ vị trí x = đến vị trí có li độ
2
x = A là:
A. t = 0,25s B. t = 0,375s C. t = 0,5s D. t = 0,75s
20. Con lắc đơn doa động với chu kỳ 1s tại nơi có gia tốc trọng trường g = 9,8m / s 2 , chiều dai con lắc là:
A. l = 24,8 m. B. l = 24,8 cm. C. l = 1,56 m. D. l = 2,45 m.
21. Một con lắc có chiều dài l = 1m. Kéo vật ra khỏi vị trí cân bằng sao cho dây treo hợp với phương thẳng
đứng một góc 100 rồi thả không vận tốc đầu. Lấy g = 10m / s 2 . Vận tốc của con lắc qua vị trí cân bằng là;
A. 0,5m/s. B. 0,55m/s. C. 1,25m/s. D. 0,77m/s.
22. Một con lắc đơn có khối lượng 1kg, dây dài 2m. Khi dao động góc lệch cực đại của dây so với đường
thẳng đứng là α 0 = 10 = 0,175rad . . Lấy g = 10m / s 2 . Cơ năng của con lắc và vận tốc của vật nặng khi nó
0


qua vị trí thấp nhất là:
A. 2J, 2m/s. B. 0,298J, 0,77m/s. C. 2,98J, 2,44m/s D. 29,8J, 7,7m/s.

BÀI 4. DAO ĐỘNG TẮT DẦN. DAO ĐỘNG CƯỠNG BỨC

1. Dao động tự do là dao động có
A. chu kỳ không phụ thuộc vào yếu tố bên ngoài.
B. chu kỳ phụ thuộc vào đặc tính của hệ.
C. chu kỳ không phụ thuộc vào đặc tính của hệ và yếu tố bên ngoài.
D. chu kỳ phụ thuộc vào đặc tính của hệ và không phụ thuộc vào yếu tố bên ngoài.
2. Phát biểu nào sau đây là đúng ?
A. Trong dao động tắt dần, một phần cơ năng đã biến thành nhiệt năng.
B. Trong dao động tắt dần, một phần cơ năng đã biến thành hóa năng.
C. Trong dao động tắt dần, một phần cơ năng đã biến thành điện năng.
D. Trong dao động tắt dần, một phần cơ năng đã biến thành quang năng.
3. Dao động tắt dần là một dao động có
A. Biên độ giảm dần do ma sát. B. chu kỳ tăng tỉ lệ với thời gian.
C. ma sát cực đại. C. tần số giảm dần theo thời gian.
4. Dao động tắt dần là một dao động có
A. biên độ giảm dần do ma sát. B. vận tốc giảm dần theo thời gian.
C. chu kỳ giảm dần theo thời gian. D. tần số giảm dần theo thời gian.
5. Phát biểu nào sau đây là đúng ?
A. Dao động duy trì là dao động tắt dần mà người ta làm mất lực cản của moi trường đối với vật dao động.

23
B. Dao động duy trì là dao động tắt dần mà người ta đã tác dụng ngoại lực biến đổi điều hòa theo thời gian
vào vật dao động.
C. Dao động duy trì là dao động tắt dần mà người ta đã tác dụng ngoại lực vào vật dao động cùng chiều với
chiều chuyển động trong một phần của từng chu kỳ.
D. Dao động duy trì là dao động tắt dần mà người ta đã kích thích lại dao động sau khi dao động bị tắt dần.
6. Dao động duy trì là là dao động tắt dần mà người ta đã:
A. kích thích lại dao động sau khi dao động đã bị tắt hẳn.
B. tác dụng vào vật ngoại lực biến đổi điều hòa theo thời gian.
C. cung cấp cho vật một năng lượng đúng bằng năng lượng vật mất đi sau mỗi chu kỳ.
D. làm mất lực cản của môi trường đối với chuyển động đó.
7. Nhận xét nào sau đây là không đúng ?
A. Dao động tắt dần càng nhanh nếu lực cản của môi trường càng lớn.
B. Dao động duy trì có chu kỳ bằng chu kỳ dao động riêng của con lắc.
C. Dao động cưỡng bức có tần số bằng tần số của lực cưỡng bức.
D. Biên độ của dao động cưỡng bức không phụ thuộc vào tần số lực cưỡng bức.
8. Phát biểu nào sau đây là không đúng ?
A. Biên độ của dao động riêng chỉ phụ thuộc vào cách kích thích ban đầu để tạo nên dao động.
B. Biên độ của dao động tắt dần giảm dần theo thời gian.
C. Biên độ của dao động duy trì phụ thuộc vào phần năng lượng cung cấp thêm cho dao động trong mỗi
chu kỳ.
D. Biên độ của dao động cưỡng bức chỉ phụ thuộc vào biên độ của lực cưỡng bức.
9. Chọn câu đúng.
Người đánh đu
A. dao động tự do.
B. dao động duy trì.
C. Dao động cưỡng bức cộng hưỡng.
D. Không phải là một trong ba dao động trên.
10. Chọn phát biểu đúng.
Biên độ của dao động cưỡng bức không phụ thuộc
A. pha ban đầu của ngoại lực tuần hoàn tác dụng lên vật.
B. biên độ ngoại lực tuần hoàn tác dụng lên vật.
C. tần số ngoại lực tuần hoàn tác dụng lên vật.
D. hệ số lực cản (của ma sát nhớt) tác dụng lên vật dao động.

BÀI 5. TỔNG HỢP HAI DAO ĐỘNG ĐIỀU HÒA CÙNG PHƯƠNG, CÙNG TẦN SỐ

1. Xét dao động tổng hợp của hai dao động có cùng tần số và cùng phương dao động. Biên độ của dao động
tổng hợp không phụ thuộc yếu tố nào sau đây ?
A. Biên độ của dao động thứ nhất. B. Biên độ của dao động thứ hai.
C. tần số chung của hai dao động. D. Độ lệch pha của hai dao động.

2. Xét hai dao động điều hòa cùng phương, cùng tần số:
x1 = A1 cos(ωt + ϕ 1 )
x 2 = A2 cos(ωt + ϕ 2 ).
Kết luận nào sau đây là đúng.
A. ϕ 2 − ϕ1 = 2kπ ; (k = 0, ± 1, ± 2, ...) : Hai dao động cùng pha.
B. ϕ 2 − ϕ1 = (2k + 1)π ; (k = 0, ± 1, ± 2, ...) : Hai dao động ngược pha.
π
C. ϕ 2 − ϕ1 = (2k + 1) (k = 0, ± 1, ± 2, ...) : Hai dao động vuông pha.
2

24
D. Cả A, B, và C đều đúng.
3. Một vật thực hiện đồng thời hai dao động điều hòa có phương trình:
x1 = A1 cos(ωt + ϕ 1 )
x 2 = A2 cos(ωt + ϕ 2 ).
Kết luận nào sau đây là đúng về biên độ của dao động tổng hợp ?
A. A = A1 + A2 nếu ϕ 2 − ϕ1 = 2kπ
B. A = A1 − A2 nếu ϕ 2 − ϕ1 = (2k + 1)π
C. A1 + A2 > A > A1 − A2 với mọi giá trị của ϕ1 và ϕ 2
D. Cả A, B, và C đều đúng
4.Hai dao động cùng pha khi độ lệch pha giữa chúng là:
A. ∆ϕ = 2kπ ; (k = 0, ± 1, ± 2, ...)
B. ∆ϕ = (2k + 1)π ; (k = 0, ± 1, ± 2, ...)
π
C. ∆ϕ = (2k + 1) ; (k = 0, ± 1, ± 2, ...)
2
π
D. ∆ϕ = (2k + 1) ; (k = 0, ± 1, ± 2, ...)
4
5.Hai dao động nào sau đây gọi là cùng pha ?
π π
A. x = 3 cos(πt + ) cm và x = 3 cos(πt + ) cm .
6 3
π π
B. x = 4 cos(πt + ) cm và x = 5 cos(πt + ) cm .
6 6
π π
C. x = 2 cos(2πt + ) cm và x = 2 cos(πt + ) cm .
6 6
π π
D. x = 3 cos(πt + ) cm và x = 3 cos(πt + ) cm .
4 6
6. Một vật thực hiện đồng thời hai dao đồng điều hòa cùng phương theo các phương trình:
x1 = 4 sin(πt + α ) cm và x1 = 4 3 cos(πt ) cm .Biên độ dao động tổng hợp đạt giá trị lớn nhất khi:
π π
A. α = 0 rad B. α = π rad C. α = rad D. α = − rad
2 2
7. Một vật thực hiện đồng thời hai dao đồng điều hòa cùng phương theo các phương trình:
x1 = 4 sin(πt + α ) cm và x1 = 4 3 cos(πt ) cm .Biên độ dao động tổng hợp đạt giá trị nhỏ nhất khi:
π π
A. α = 0 rad B. α = π rad C. α = rad D. α = − rad
2 2

8. Xét hai dao động điều hòa cùng phương, cùng tần số:
x1 = A1 cos(ωt + ϕ 1 )
x 2 = A2 cos(ωt + ϕ 2 ).
Biên độ dao động tổng hợp có giá trị cực đại khi độ lệch pha của hai động thành phần có giá trị ứng với
phương án nào sau đây là đúng ?
A. ϕ 2 − ϕ1 = (2k + 1)π .
B. ϕ 2 − ϕ1 = 2kπ .
π
C. ϕ 2 − ϕ1 = (2k + 1)
2
D. ϕ1 − ϕ 2 = (2k + 1)π .
9.Khi tổng hợp hai dao động điều hòa cùng phương, cùng tần số và cùng pha nhau thì:
25
A. biên độ dao động nhỏ nhất,
B. dao động tổng hợp sẽ nhanh pha hơn dao động thành phần.
C. dao động tổng hợp sẽ ngược pha với một trong hai dao động thành phần.
D. biên độ dao động lớn nhất.
10. Chỉ ra câu sai .
Khi tổng hợp hai dao động cùng phương, cùng tần số nhưng ngược pha nhau thì:
A. biên dộ dao động nhỏ nhất.
B. dao động tổng hợp sẽ cùng pha với một trong hai dao động thành phần.
C. dao động tổng hợp sẽ ngược pha với một trong hai dao động thành phần.
D. biên độ dao động lớn nhất.
11. Khi tổng hợp hai dao động cùng phương, cùng tần số nhưng ngựoc pha nhau thì:
A. biên độ dao động nhỏ hơn hiệu hai biên độ dao động thành phần.
B. dao động tổng hợp cùng pha với một trong hai dao động thành phần.
C. dao động tổng hợp vuông pha với một trong hai dao động thành phần.
D. biên độ dao động lớn nhất.
12. Khi tổng hợp hai dao động cùng phương, cùng tần số nhưng ngựoc pha nhau thì:
A. biên dộ dao động nhỏ nhất.
B. dao động tổng hợp vuông pha với một trong hai dao động thành phần.
C. dao động tổng hợp nhanh pha hơn hai dao động thành phần.
D. biên dộ dao động lớn nhất.
13. Khi tổng hợp hai dao động cùng phương, cùng tần số nhưng ngược pha nhau thì:
A. dao động tổng hợp nhanh pha hơn hai dao động thành phần.
B. dao động tổng hợp vuông pha với một trong hai dao động thành phần.
C. dao động tổng hợp ngược pha với một trong hai dao động thành phần.
D. biên dộ dao động lớn nhất.
14. Biên độ dao động tổng hợp của hai dao động vuông pha có biên độ A1 và A2 nhận các giá trị nào sau
đây ?
... A. A = A12 + A2 .2
B. A = A12 − A2 2
C. A = A1 + A2 D. A = A1 − A2
15. Một vật thực hiện đồng thời hai dao động điều hòa cùng phương, cùng tần số có biên độ lần lượt là 8
cm và 12 cm. Biên độ dao động tổng hợp có thể là:
A. A = 2 cm. B. A = 3 cm. C. A = 5 cm. D. A = 21cm.
16. Một vật thực hiện đồng thời hai dao động điều hòa cùng phương, cùng tần số có biên độ lần lượt là 8
cm và 6 cm. Biên độ dao động tổng hợp không thể nhận giá trị nào sau đây:
...A = 14 cm. B. A = 2 cm. C. A = 10 cm. D. A = 17cm.
17. Chọn câu đúng.
Hai dao động điều hòa cùng phương, cùng chu kỳ có phương trình lần lượt là:
π
x1 = 4 cos(4πt + ) cm ; x 2 = 3 cos(4πt + π ) cm . Biên độ và pha ban đầu của dao động tổng hợp là:
2
...A. 5cm; 36,90. B. 5cm; 0,7π rad C. 5cm; 0,2π rad D. C. 5cm; 0,3π rad
18. Chọn câu đúng.
π π
Hai dao động điều hòa cùng phương, cùng chu kỳ có phương trình lần lượt là: x1 = 5 cos( t + ) cm ;
2 4
π 3π
x 2 = 5 cos( t + ) cm . Biên độ và pha ban đầu của dao động tổng hợp là:
2 4
π π π
...A. 5cm; rad . B. 7,1cm; 0 rad C. 7,1cm; rad D. 7,1cm; rad
2 2 4



26
Đề thi vào lớp 10 môn Toán |  Đáp án đề thi tốt nghiệp |  Đề thi Đại học |  Đề thi thử đại học môn Hóa |  Mẫu đơn xin việc |  Bài tiểu luận mẫu |  Ôn thi cao học 2014 |  Nghiên cứu khoa học |  Lập kế hoạch kinh doanh |  Bảng cân đối kế toán |  Đề thi chứng chỉ Tin học |  Tư tưởng Hồ Chí Minh |  Đề thi chứng chỉ Tiếng anh
Theo dõi chúng tôi
Đồng bộ tài khoản