Monte Carlo Inference Methods

Chia sẻ: TTK | Ngày: | Loại File: PDF | Số trang:92

0
2
lượt xem
1
download

Monte Carlo Inference Methods

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Enrico Fermi (1901–1954) took great delight in astonishing his colleagues with his remarkably accurate predictions of experimental results. . . his “guesses” were really derived from the statistical sampling techniques that he used to calculate with whenever insomnia struck!

Chủ đề:
Lưu

Nội dung Text: Monte Carlo Inference Methods

Monte Carlo<br /> Inference Methods<br /> <br /> Iain Murray<br /> University of Edinburgh<br /> http://iainmurray.net<br /> <br /> Monte Carlo and Insomnia<br /> Enrico Fermi (1901–1954) took<br /> great delight in astonishing his<br /> colleagues with his remarkably<br /> accurate predictions of<br /> experimental results. . .<br /> . . . his “guesses” were really<br /> derived from the statistical<br /> sampling techniques that he used<br /> to calculate with whenever<br /> insomnia struck!<br /> —The beginning of the Monte Carlo method, N. Metropolis<br /> <br /> Overview<br /> Gaining insight from random samples<br /> Inference / Computation<br /> What does my data imply? What is still uncertain?<br /> Sampling methods:<br /> Importance, Rejection, Metropolis–Hastings, Gibbs, Slice<br /> Practical issues / Debugging<br /> <br /> Linear regression<br /> y = θ1 x + θ2 ,<br /> <br /> p(θ) = N (θ; 0, 0.42I)<br /> <br /> 4<br /> 2<br /> <br /> y<br /> <br /> 0<br /> -2<br /> -4<br /> <br /> Prior p(θ)<br /> <br /> -6<br /> -2<br /> <br /> 0<br /> <br /> 2<br /> <br /> x<br /> <br /> 4<br /> <br /> Linear regression<br /> y (n) = θ1x(n) + θ2 +<br /> <br /> (n)<br /> <br /> (n)<br /> <br /> ,<br /> <br /> ∼ N (0, 0.12)<br /> <br /> 4<br /> 2<br /> <br /> y<br /> <br /> 0<br /> -2<br /> -4<br /> -6<br /> <br /> p(θ | Data) ∝ p(Data | θ) p(θ)<br /> -2<br /> <br /> 0<br /> <br /> 2<br /> <br /> x<br /> <br /> 4<br /> <br />
Đồng bộ tài khoản