Ngôn ngữ lập trình c&c++ ( Phạm Hồng Thái) P11

Chia sẻ: Yukogaru | Ngày: | Loại File: PDF | Số trang:7

0
66
lượt xem
10
download

Ngôn ngữ lập trình c&c++ ( Phạm Hồng Thái) P11

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Chương 4. Hàm và chương trình ... Khi đó vùng nhớ mà chương trình dịch đã dành cho mảng là không đủ để sử dụng. Đây chính là hạn chế thứ hai của mảng được khai báo trước. Khắc phục các hạn chế trên của kiểu mảng, bây giờ chúng ta sẽ không khai báo (bố trí) trước mảng dữ liệu với kích thước cố định như vậy. Kích thước cụ thể sẽ được cấp phát trong quá trình chạy chương trình theo đúng yêu cầu của NSD. Nhờ vậy chúng ta có đủ số ô nhớ để làm việc mà...

Chủ đề:
Lưu

Nội dung Text: Ngôn ngữ lập trình c&c++ ( Phạm Hồng Thái) P11

  1. Chương 4. Hàm và chương trình cần làm việc với hơn 1000 số nguyên. Khi đó vùng nhớ mà chương trình dịch đã dành cho mảng là không đủ để sử dụng. Đây chính là hạn chế thứ hai của mảng được khai báo trước. Khắc phục các hạn chế trên của kiểu mảng, bây giờ chúng ta sẽ không khai báo (bố trí) trước mảng dữ liệu với kích thước cố định như vậy. Kích thước cụ thể sẽ được cấp phát trong quá trình chạy chương trình theo đúng yêu cầu của NSD. Nhờ vậy chúng ta có đủ số ô nhớ để làm việc mà vẫn tiết kiệm được bộ nhớ, và khi không dùng nữa ta có thể thu hồi (còn gọi là giải phóng) số ô nhớ này để chương trình sử dụng vào việc khác. Hai công việc cấp phát và thu hồi này được thực hiện thông qua các toán tử new, delete và con trỏ p. Thông qua p ta có thể làm việc với bất kỳ địa chỉ nào của vùng được cấp phát. Cách thức bố trí bộ nhớ như thế này được gọi là cấp phát động. Sau đây là cú pháp của câu lệnh new. p = new ; // cấp phát 1 phần tử p = new [n] ; // cấp phát n phần tử Ví dụ: int *p ; p = new int ; // cấp phát vùng nhớ chứa được 1 số nguyên p = float int[100] ; // cấp phát vùng nhớ chứa được 100 số thực Khi gặp toán tử new, chương trình sẽ tìm trong bộ nhớ một lượng ô nhớ còn rỗi và liên tục với số lượng đủ theo yêu cầu và cho p trỏ đến địa chỉ (byte đầu tiên) của vùng nhớ này. Nếu không có vùng nhớ với số lượng như vậy thì việc cấp phát là thất bại và p = NULL (NULL là một địa chỉ rỗng, không xác định). Do vậy ta có thể kiểm tra việc cấp phát có thành công hay không thông qua kiểm tra con trỏ p bằng hay khác NULL. Ví dụ: float *p ; int n ; cout > n; p = new double[n]; if (p == NULL) { cout
  2. Chương 4. Hàm và chương trình Để giải phóng bộ nhớ đã cấp phát cho một biến (khi không cần sử dụng nữa) ta sử dụng câu lệnh delete. delete p ; // p là con trỏ được sử dụng trong new và để giải phóng toàn bộ mảng được cấp pháp thông qua con trỏ p ta dùng câu lệnh: delete[] p ; // p là con trỏ trỏ đến mảng Dưới đây là ví dụ sử dụng tổng hợp các phép toán trên con trỏ. Ví dụ 1 : Nhập dãy số (không dùng mảng). Sắp xếp và in ra màn hình. Trong ví dụ này chương trình xin cấp phát bộ nhớ đủ chứa n số nguyên và được trỏ bởi con trỏ head. Khi đó địa chỉ của số nguyên đầu tiên và cuối cùng sẽ là head và head+n-1. p và q là 2 con trỏ chạy trên dãy số này, so sánh và đổi nội dung của các số này với nhau để sắp thành dãy tăng dần và cuối cùng in kết quả. main() { int *head, *p, *q, n, tam; // head trỏ đến (đánh dấu) đầu dãy cout > n ; head = new int[n] ; // cấp phát bộ nhớ chứa n số nguyên for (p=head; p
  3. Chương 4. Hàm và chương trình a[i] = *(a+i). Chú ý khi viết *(p+1) = *(a+1) ta thấy vai trò của p và a trong biểu thức này là như nhau, cùng truy cập đến giá trị của phần tử a[1]. Tuy nhiên khi viết *(p++) thì lại khác với *(a++), cụ thể viết p++ là hợp lệ còn a++ là không được phép. Lý do là tuy p và a cùng thể hiện địa chỉ của mảng a nhưng p thực sự là một biến, nó có thể thay đổi được giá trị còn a là một hằng, giá trị không được phép thay đổi. Ví dụ viết x = 3 và sau đó có thể tăng x bởi x++ nhưng không thể viết x = 3++. Ví dụ 1 : In toàn bộ mảng thông qua con trỏ. int a[5] = {1,2,3,4,5}, *p, i; 1: p = a; for (i=1; i
  4. Chương 4. Hàm và chương trình strcpy(s, "Hello") ; // trong trường hợp này không cần cấp phát bộ t=s; // nhớ cho t vì t và s cùng sử dụng chung vùng nhớ nhưng: char *s = new char[30], *t ; strcpy(s, "Hello") ; t = new char[30]; // trong trường hợp này phải cấp bộ nhớ cho t vì strcpy(t, s) ; // có chỗ để strcpy sao chép sang nội dung của s. c. Con trỏ và mảng hai chiều Để dễ hiểu việc sử dụng con trỏ trỏ đến mảng hai chiều, chúng ta nhắc lại về mảng 2 chiều thông qua ví dụ. Giả sử ta có khai báo: float a[2][3], *p; khi đó a được bố trí trong bộ nhớ như là một dãy 6 phần tử float như sau a a+1 tuy nhiên a không được xem là mảng 1 chiều với 6 phần tử mà được quan niệm như mảng một chiều gồm 2 phần tử, mỗi phần tử là 1 bộ 3 số thực. Do đó địa chỉ của mảng a chính là địa chỉ của phần tử đầu tiên a[0][0], và a+1 không phải là địa chỉ của phần tử tiếp theo a[0][1] mà là địa chỉ của phần tử a[1][0]. Nói cách khác a+1 cũng là tăng địa chỉ của a lên một thành phần, nhưng 1 thành phần ở đây được hiểu là toàn bộ một dòng của mảng. Mặt khác, việc lấy địa chỉ của từng phần tử (float) trong a thường là không chính xác. Ví dụ: viết &a[i][j] (địa chỉ của phần tử dòng i cột j) là được đối với mảng nguyên nhưng lại không đúng đối với mảng thực. Từ các thảo luận trên, phép gán p = a là dễ gây nhầm lẫn vì p là con trỏ float còn a là địa chỉ mảng (1 chiều). Do vậy trước khi gán ta cần ép kiểu của a về kiểu float. Tóm lại cách gán địa chỉ của a cho con trỏ p được thực hiện như sau: Cách sai: p=a; // sai vì khác kiểu Các cách đúng: p = (float*)a; // ép kiểu của a về con trỏ float (cũng là kiểu của p) p = a[0]; // gán với địa chỉ của mảng a[0] p = &a[0][0]; // gán với địa chỉ số thực đầu tiên trong a 92
  5. Chương 4. Hàm và chương trình trong đó cách dùng p = (float*)a; là trực quan và đúng trong mọi trường hợp nên được dùng thông dụng hơn cả. Sau khi gán a cho p (p là con trỏ thực), việc tăng giảm p chính là dịch chuyển con trỏ trên từng phần tử (thực) của a. Tức: p trỏ tới a[0][0] p+1 trỏ tới a[0][1] p+2 trỏ tới a[0][2] p+3 trỏ tới a[1][0] p+4 trỏ tới a[1][1] p+5 trỏ tới a[1][2] Tổng quát, đối với mảng m x n phần tử: p + i*n + j trỏ tới a[i][j] hoặc a[i][j] = *(p + i*n + j) Từ đó để truy nhập đến phần tử a[i][j] thông qua con trỏ p ta nên sử dụng cách viết sau: p = (float*)a; cin >> *(p+i*n+j) ; // nhập cho a[i][j] cout *(p+i); // nhập như dãy mxn phần tử *(p+2*n+3) = 100; *(p+4*n) = 100; // gán a[2,3] = a[4][0] = 100 for (i=0; i
  6. Chương 4. Hàm và chương trình } getch(); } Chú ý: việc lấy địa chỉ phần tử a[i][j] của mảng thực a là không chính xác. Tức: viết p = &a[i][j] có thể dẫn đến kết quả sai. 6. Mảng con trỏ a. Khái niệm chung Thực chất một con trỏ cũng là một biến thông thường có tên gọi (ví dụ p, q, …), do đó cũng giống như biến, nhiều biến cùng kiểu có thể tổ chức thành một mảng với tên gọi chung, ở đây cũng vậy nhiều con trỏ cùng kiểu cũng được tổ chức thành mảng. Như vậy mỗi phần tử của mảng con trỏ là một con trỏ trỏ đến một mảng nào đó. Nói cách khác một mảng con trỏ cho phép quản lý nhiều mảng dữ liệu cùng kiểu. Cách khai báo: *a[size]; Ví dụ: int *a[10]; khai báo một mảng chứa 10 con trỏ. Mỗi con trỏ a[i] chứa địa chỉ của một mảng nguyên nào đó. b. Mảng xâu kí tự Là trường hợp riêng của mảng con trỏ nói chung, trong đó kiểu cụ thể là char. Mỗi thành phần mảng là một con trỏ trỏ đến một xâu kí tự, có nghĩa các thao tác tiến hành trên *a[i] như đối với một xâu kí tự. Ví dụ 1 : Nhập vào và in ra một bài thơ. main() { clrscr(); char *dong[100]; // khai báo 100 con trỏ kí tự (100 dòng) int i, n; cout > n ; // nhập số dòng thực sự cin.ignore(); // loại dấu ↵ trong lệnh cin ở trên for (i=0; i
  7. Chương 4. Hàm và chương trình { dong[i] = new char[80]; // cấp bộ nhớ cho dòng i cin.getline(dong[i],80); // nhập dòng i } for (i=0; i
Đồng bộ tài khoản