Vui lòng download xuống để xem tài liệu đầy đủ.

ÔN TẬP HÌNH THANG – HÌNH THANG CÂN

Chia sẻ: | Ngày: pdf 5 p | 46

0
185
views

HS nhắc lại ĐN, T/c; dấu hiệu nhận biết hình thang, hình thang cân II.Luyện tập: Bài 1: Cho hình thang cân ABCD. Đáy nhỏ AB bằng cạnh bên BC và đường chéo AC vuông góc với cạnh bên AD.

ÔN TẬP HÌNH THANG – HÌNH THANG CÂN
Nội dung Text

  1. ÔN TẬP HÌNH THANG – HÌNH THANG CÂN I. Lý thuyết HS nhắc lại ĐN, T/c; dấu hiệu nhận biết hình thang, hình thang cân II.Luyện tập: Bài 1: Cho hình thang cân ABCD. Đáy nhỏ AB bằng cạnh bên BC và đường chéo AC vuông góc với cạnh bên AD. a) Tính các góc của hình thang cân. b) C/M rằng trong hình thang cân đó đáy lớn gấp đôi đáy nhỏ. HD giải: B A a) ABCD là hình thang (gt) => AB // CD, A => A1 = C1 (2 góc so le trong) (1) 2 1 C D Mặt khác AB = BC (gt)   ABC cân tại C  A1 = C2 (2) Từ (1) và (2) => C1 = C2 = 1/2.C Mà ABCD là hình thang cân (gt) => D = C => C1 = 1/2.D  ACD vuông có D + C1 = 900 hay D + 1/2.D = 900 => D = 600 Mà A + D = 1800 (cặp góc trong cùng phía) => A = 1200 Trong hình thang cân ABCD có A = B = 1200 C = D = 600
  2. b) Trong  vuông ACD có C = 600 => C1 = 300 => AD = 1/2.CD Mà AD = BC và BC = AB => AB = 1/2.CD hay CD = 2.AB Bài 2: Cho  ABC vuông cân tại A. Trên nửa mặt phẳng bờ BC không C D chứa điểm A, vẽ BD  BC, và BD = BC a) Tứ giác ABCD là hình gì? b) Biết AB = 5cm. Tính CD A B HD giải: a)  ABC vuông cân tại A (gt)   ACB = 450  BCD vuông cân tại B   BCD = 450   ACD =  ACB +  BCD = 900 Ta có AB  AC; CD  AC  AB // AC  ABCD là hình thang vuông. b)  ABC vuông ở A, theo định lý Pi Ta Go ta có BC2 = AB2 + AC2 = 52 + 52 = 50 Trong  vuông BCD ta lại có: CD2 = BC2 + BD2 = 50 + 50 = 100  CD = 10 cm Bài 3: Cho hình thang cân ABCD có AB//CD, AB < CD. Kẻ 2 đường cao AH, BK a) C/M rằng HD = KC; B A b) Biết AB = 3cm. Tính độ dài các đoạn HD, CK HD giải: D C H K
  3. a) ABCD là hình thang cân  AD = BC;  D =  C  AHD =  BKC ( cạnh huyền + góc nhọn)  DH = KC b) AH  CD, BK  CD(gt)  AH // BK Ta lại có AB // HK (gt)  HK = AB (hình thang ABKH có 2 cạnh bên song song thì 2 cạnh bên bằng nhau) Mà DH + KC = CD – HK = CD – AB  CD  AB 15  6 DH = KC =   4,5(cm) 2 2 Bài 4: Cho  đều ABC. Từ điểm O trong tam giác A kẻ đường thẳng song song với BC cắt AC ở D, F kẻ đường thẳng song song với AB cắt CB ở E, kẻ O D đường thẳng song song với AC cắt AB ở F. B C a) Tứ giác ADOF là hình gì? E b) So sánh chu vi của  DEF với tổng độ dài các đoạn OA, OB, OC HD giải: Ta có OE // AB (gt)   OEC =  B (2 góc đồng vị) Mà B =  C   OEC =  C Mặt khác OD // EC (gt)  tứ giác CDOE là hình thang cân  OC = ED C/M tương tự ta có:
  4. Tứ giác ADOF là hình thang cân  OA = DF. Tứ giác BEOF là hình thang cân  OB = EF Vậy chu vi  DEF bằng: DF + FE + ED = OA + OB + OC Bài 5: Cho  ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE. A a) Tứ giác BDEC là hình gì? vì sao? b) Các điểm D,E ở vị trí nào thì BD = DE = EC E D HD giải: 1 a) Ta có AD = AE   ADE cân tại A 1 1 2 2 B C 2  cân ABC và ADE có chung góc ở đỉnh A  các góc ở đáy bằng nhau hay  ADE =  ABC  DE // CB (có 2 góc đồng vị bằng nhau)  BDEC là hình thang Mặt khác  DBC =  ECD ( ABC cân tại A)  BDEC là hình thang cân b) ta có BD = DE   B1 =  E1   B1 =  B2 (Vì  E1 =  B2) tương tự DE = EC   C1 =  C2
  5.  nếu BE, CD là các đường phân giác….. HD về nhà: Làm các bài tập 26, 31, 32, 33 SBT
Đồng bộ tài khoản