Ôn thi đại học môn Toán phần lượng giác_Chương 1

Chia sẻ: T N | Ngày: | Loại File: PDF | Số trang:21

1
133
lượt xem
82
download

Ôn thi đại học môn Toán phần lượng giác_Chương 1

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'ôn thi đại học môn toán phần lượng giác_chương 1', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Ôn thi đại học môn Toán phần lượng giác_Chương 1

  1. CHÖÔNG 1: COÂNG THÖÙC LÖÔÏNG GIAÙC I. Ñònh nghóa Treân maët phaúng Oxy cho ñöôøng troøn löôïng giaùc taâm O baùn kính R=1 vaø ñieåm M treân ñöôøng troøn löôïng giaùc maø sñ AM = β vôùi 0 ≤ β ≤ 2π Ñaët α = β + k2π, k ∈ Z Ta ñònh nghóa: sin α = OK cos α = OH sin α tgα = vôùi cos α ≠ 0 cos α cos α cot gα = vôùi sin α ≠ 0 sin α II. Baûng giaù trò löôïng giaùc cuûa moät soá cung (hay goùc) ñaëc bieät Goùc α ( ) 0 0o π ( ) 30 o π ( ) 45o π ( ) 60 o π ( ) 90 o Giaù trò 6 4 3 2 sin α 0 1 2 3 1 2 2 2 cos α 1 3 2 1 0 2 2 2 tgα 0 3 1 3 || 3 cot gα || 3 1 3 0 3 III. Heä thöùc cô baûn sin 2 α + cos2 α = 1 1 π 1 + tg 2 α = 2 vôùi α ≠ + kπ ( k ∈ Z ) cos α 2 1 t + cot g 2 = vôùi α ≠ kπ ( k ∈ Z ) sin 2 α IV. Cung lieân keát (Caùch nhôù: cos ñoái, sin buø, tang sai π ; phuï cheùo) a. Ñoái nhau: α vaø −α sin ( −α ) = − sin α cos ( −α ) = cos α tg ( −α ) = −tg ( α ) cot g ( −α ) = − cot g ( α )
  2. b. Buø nhau: α vaø π − α sin ( π − α ) = sin α cos ( π − α ) = − cos α tg ( π − α ) = −tgα cot g ( π − α ) = − cot gα c. Sai nhau π : α vaø π + α sin ( π + α ) = − sin α cos ( π + α ) = −cosα tg ( π + α ) = t gα cot g ( π + α ) = cot gα π d. Phuï nhau: α vaø −α 2 ⎛π ⎞ sin ⎜ − α ⎟ = cos α ⎝2 ⎠ ⎛π ⎞ cos ⎜ − α ⎟ = sin α ⎝2 ⎠ ⎛π ⎞ tg ⎜ − α ⎟ = cot gα ⎝2 ⎠ ⎛π ⎞ cot g ⎜ − α ⎟ = tgα ⎝2 ⎠ π π e.Sai nhau : α vaø + α 2 2 ⎛π ⎞ sin ⎜ + α ⎟ = cos α ⎝2 ⎠ ⎛π ⎞ cos ⎜ + α ⎟ = − sin α ⎝2 ⎠ ⎛π ⎞ tg ⎜ + α ⎟ = − cot gα ⎝2 ⎠ ⎛π ⎞ cot g ⎜ + α ⎟ = − tgα ⎝2 ⎠
  3. f. sin ( x + kπ ) = ( −1) sin x, k ∈ Z k cos ( x + kπ ) = ( −1) cos x, k ∈ Z k tg ( x + kπ ) = tgx, k ∈ Z cot g ( x + kπ ) = cot gx V. Coâng thöùc coäng sin ( a ± b ) = sin a cos b ± sin b cosa cos ( a ± b ) = cosa cos b m sin asin b tga ± tgb tg ( a ± b ) = 1 m tgatgb VI. Coâng thöùc nhaân ñoâi sin 2a = 2sin a cosa cos2a = cos2 a − sin 2 a = 1 − 2sin 2 a = 2 cos2 a − 1 2tga tg2a = 1 − tg2 a cot g2 a − 1 cot g2a = 2 cot ga VII. Coâng thöùc nhaân ba: sin 3a = 3sin a − 4sin 3 a cos3a = 4 cos3 a − 3cosa VIII. Coâng thöùc haï baäc: 1 sin 2 a = (1 − cos2a ) 2 1 cos2 a = (1 + cos2a ) 2 1 − cos2a tg 2 a = 1 + cos2a IX. Coâng thöùc chia ñoâi a Ñaët t = tg (vôùi a ≠ π + k 2 π ) 2
  4. 2t sin a = 1 + t2 1 − t2 cosa = 1 + t2 2t tga = 1 − t2 X. Coâng thöùc bieán ñoåi toång thaønh tích a+ b a−b cosa + cos b = 2 cos cos 2 2 a+b a−b cosa − cos b = −2sin sin 2 2 a+ b a−b sin a + sin b = 2 cos sin 2 2 a+b a−b sin a − sin b = 2 cos sin 2 2 sin ( a ± b ) tga ± tgb = cosa cos b sin ( b ± a ) cot ga ± cot gb = sin a.sin b XI. Coâng thöùc bieån ñoåi tích thaønh toång 1 cosa.cos b = ⎡ cos ( a + b ) + cos ( a − b ) ⎦ ⎤ 2⎣ −1 sin a.sin b = ⎡ cos ( a + b ) − cos ( a − b ) ⎦ ⎤ 2 ⎣ 1 sin a.cos b = ⎡sin ( a + b ) + sin ( a − b ) ⎤ 2⎣ ⎦ sin 4 a + cos4 a − 1 2 Baøi 1: Chöùng minh = sin 6 a + cos6 a − 1 3 Ta coù: sin 4 a + cos 4 a − 1 = ( sin 2 a + cos2 a ) − 2sin 2 a cos2 a − 1 = −2sin 2 a cos2 a 2 Vaø: sin 6 a + cos6 a − 1 = ( sin 2 a + cos2 a )( sin 4 a − sin 2 a cos2 a + cos 4 a ) − 1 = sin 4 a + cos 4 a − sin 2 a cos2 a − 1 = (1 − 2sin 2 a cos2 a ) − sin 2 a cos2 a − 1 = −3sin 2 a cos2 a
  5. sin 4 a + cos4 a − 1 −2sin 2 a cos2 a 2 Do ñoù: = = sin 6 a + cos6 a − 1 −3sin 2 a cos2 a 3 1 + cos x ⎡ (1 − cos x ) ⎤ 2 Baøi 2: Ruùt goïn bieåu thöùc A = = ⎢1 + ⎥ sin x ⎢ ⎣ sin 2 x ⎥ ⎦ 1 π Tính giaù trò A neáu cos x = − vaø < x < π 2 2 1 + cos x ⎛ sin x + 1 − 2 cos x + cos2 x ⎞ 2 Ta coù: A = ⎜ ⎟ sin x ⎝ sin 2 x ⎠ 1 + cos x 2 (1 − cos x ) ⇔A= . sin x sin 2 x 2 (1 − cos2 x ) 2sin 2 x 2 ⇔A= = = (vôùi sin x ≠ 0 ) sin 3 x sin 3 x sin x 1 3 Ta coù: sin 2 x = 1 − cos2 x = 1 − = 4 4 π Do: < x < π neân sin x > 0 2 3 Vaäy sin x = 2 2 4 4 3 Do ñoù A = = = sin x 3 3 Baøi 3: Chöùng minh caùc bieåu thöùc sau ñaây khoâng phuï thuoäc x: a. A = 2 cos4 x − sin 4 x + sin 2 x cos2 x + 3sin 2 x 2 cot gx + 1 b. B = + tgx − 1 cot gx − 1 a. Ta coù: A = 2 cos4 x − sin 4 x + sin 2 x cos2 x + 3sin 2 x ⇔ A = 2 cos4 x − (1 − cos2 x ) + (1 − cos2 x ) cos2 x + 3 (1 − cos2 x ) 2 ⇔ A = 2 cos4 x − (1 − 2 cos2 x + cos4 x ) + cos2 x − cos4 x + 3 − 3cos2 x ⇔ A = 2 (khoâng phuï thuoäc x) b. Vôùi ñieàu kieän sin x.cos x ≠ 0,tgx ≠ 1 2 cot gx + 1 Ta coù: B = + tgx − 1 cot gx − 1
  6. 1 +1 2 tgx 2 1 + tgx ⇔B= + = + tgx − 1 1 − 1 tgx − 1 1 − tgx tgx 2 − (1 − tgx ) 1 − tgx ⇔ B= = = −1 (khoâng phuï thuoäc vaøo x) tgx − 1 tgx − 1 Baøi 4: Chöùng minh 1 + cosa ⎡ (1 − cosa ) ⎤ cos2 b − sin 2 c 2 ⎢1 − 2 ⎥+ 2 2 − cot g 2 b cot g 2 c = cot ga − 1 2sin a ⎢ sin a ⎥ sin bsin c ⎣ ⎦ Ta coù: cos2 b − sin 2 c * − cot g 2 b.cot g 2 c sin b.sin c 2 2 cotg 2 b 1 = − 2 − cot g 2 b cot g 2 c sin c sin b 2 ( ) ( ) = cot g 2 b 1 + cot g 2 c − 1 + cot g 2 b − cot g 2 b cot g 2 c = −1 (1) 1 + cosa ⎡ (1 − cos a ) ⎤ 2 * ⎢1 − ⎥ 2 sin a ⎢ sin 2 a ⎥ ⎣ ⎦ 1 + cosa ⎡ (1 − cos a ) ⎤ 2 = ⎢1 − ⎥ 2 sin a ⎢ 1 − cos2 a ⎥ ⎣ ⎦ 1 + cosa ⎡ 1 − cosa ⎤ = 1− 2sin a ⎢ 1 + cosa ⎥ ⎣ ⎦ 1 + cosa 2 cosa = . = cot ga (2) 2 sin a 1 + cos a Laáy (1) + (2) ta ñöôïc ñieàu phaûi chöùng minh xong. Baøi 5: Cho ΔABC tuøy yù vôùi ba goùc ñeàu laø nhoïn. Tìm giaù trò nhoû nhaát cuûa P = tgA.tgB.tgC Ta coù: A + B = π − C Neân: tg ( A + B) = −tgC tgA + tgB ⇔ = −tgC 1 − tgA.tgB ⇔ tgA + tgB = −tgC + tgA.tgB.tgC Vaäy: P = tgA.tgB.tgC = tgA + tgB + tgC AÙp duïng baát ñaúng thöùc Cauchy cho ba soá döông tgA,tgB,tgC ta ñöôïc tgA + tgB + tgC ≥ 3 3 tgA.tgB.tgC
  7. ⇔ P ≥ 33 P ⇔ 3 P2 ≥ 3 ⇔P≥3 3 ⎧tgA = tgB = tgC ⎪ π Daáu “=” xaûy ra ⇔ ⎨ π ⇔ A=B=C= ⎪0 < A,B,C < 2 3 ⎩ π Do ñoù: MinP = 3 3 ⇔ A = B = C = 3 Baøi 6 : Tìm giaù trò lôùn nhaát vaø nhoû nhaát cuûa a/ y = 2 sin 8 x + cos4 2x b/ y = 4 sin x − cos x 4 ⎛ 1 − cos 2x ⎞ a/ Ta coù : y = 2 ⎜ ⎟ + cos 2x 4 ⎝ 2 ⎠ Ñaët t = cos 2x vôùi −1 ≤ t ≤ 1 thì 1 4 y = (1 − t ) + t 4 8 1 3 => y ' = − (1 − t ) + 4t 3 2 (1 − t ) = 8t 3 3 Ta coù : y ' = 0 ⇔ 1 − t = 2t 1 ⇔t= 3 1 ⎛1⎞ Ta coù y(1) = 1; y(-1) = 3; y ⎜ ⎟ = 27 ⎝ 3⎠ 1 Do ñoù : Max y = 3 vaø Miny = x∈ x∈ 27 b/ Do ñieàu kieän : sin x ≥ 0 vaø cos x ≥ 0 neân mieàn xaùc ñònh ⎡ π ⎤ D = ⎢ k2π, + k2π ⎥ vôùi k ∈ ⎣ 2 ⎦ Ñaët t = cos x vôùi 0 ≤ t ≤ 1 thì t = cos x = 1 − sin x 4 2 2 Neân sin x = 1 − t4 Vaäy y = 1 − t − t treân D ' = [ 0,1] 8 4 −t 3 Thì y ' = − 1 < 0 ∀t ∈ [ 0; 1) 2. (1 − t 8 ) 4 7 Neân y giaûm treân [ 0, 1 ]. Vaäy : max y = y ( 0 ) = 1, min y = y (1) = −1 x∈ D x∈ D Baøi 7: Cho haøm soá y = sin4 x + cos4 x − 2m sin x cos x Tìm giaù trò m ñeå y xaùc ñònh vôùi moïi x
  8. Xeùt f (x) = sin 4 x + cos4 x − 2m sin x cos x f ( x ) = ( sin 2 x + cos2 x ) − m sin 2x − 2 sin 2 x cos2 x 2 1 f ( x) = 1 − sin2 2x − m sin 2x 2 Ñaët : t = sin 2x vôùi t ∈ [ −1, 1] y xaùc ñònh ∀x ⇔ f ( x ) ≥ 0∀x ∈ R 1 2 ⇔ 1− t − mt ≥ 0 ∀t ∈ [ −1,1] 2 ⇔ g ( t ) = t 2 + 2mt − 2 ≤ 0 ∀t ∈ [ −1, 1] Do Δ ' = m2 + 2 > 0 ∀m neân g(t) coù 2 nghieäm phaân bieät t1, t2 Luùc ñoù t t1 t2 g(t) + 0 - 0 Do ñoù : yeâu caàu baøi toaùn ⇔ t1 ≤ −1 < 1 ≤ t 2 ⎧1g ( −1) ≤ 0 ⎪ ⎧−2m − 1 ≤ 0 ⇔⎨ ⇔ ⎨ ⎪1g (1) ≤ 0 ⎩ ⎩2m − 1 ≤ 0 ⎧ −1 ⎪m ≥ 2 ⎪ 1 1 ⇔⎨ ⇔− ≤m≤ ⎪m ≤ 1 2 2 ⎪ ⎩ 2 Caùch khaùc : g ( t ) = t 2 + 2mt − 2 ≤ 0 ∀t ∈ [ −1,1] ⇔ max g (t ) ≤ 0 ⇔ max { g (−1), g (1)} ≤ 0 t ∈[ −1,1 ] ⎧ −1 ⎪m ≥ 2 ⎪ ⇔ max {−2m − 1),− 2m + 1)} ≤ 0 ⇔ ⎨ ⎪m ≤ 1 ⎪ ⎩ 2 1 1 ⇔− ≤m≤ 2 2 π 3π 5π 7π 3 Baøi 8 : Chöùng minh A = sin4 + sin4 + sin4 + sin4 = 16 16 16 16 2 7π ⎛π π ⎞ π Ta coù : sin = sin ⎜ − ⎟ = cos 16 ⎝ 2 16 ⎠ 16 5π ⎛ π 5π ⎞ 3π sin = cos ⎜ − ⎟ = cos 16 ⎝ 2 16 ⎠ 16 Maët khaùc : sin 4 α + cos4 α = ( sin 2 α + cos2 α ) − 2 sin 2 α cos2 α 2 = 1 − 2sin2 α cos2 α 1 = 1 − sin2 2α 2
  9. π 7π 3π 5π Do ñoù : A = sin4 + sin4 + sin4 + sin4 16 16 16 16 ⎛ π π ⎞ ⎛ 4 3π 3π ⎞ = ⎜ sin 4 + cos4 ⎟ + ⎜ sin + cos4 ⎟ ⎝ 16 16 ⎠ ⎝ 16 16 ⎠ ⎛ 1 π⎞ ⎛ 1 3π ⎞ = ⎜ 1 − sin 2 ⎟ + ⎜ 1 − sin 2 ⎟ ⎝ 2 8⎠ ⎝ 2 8 ⎠ 1⎛ π 3π ⎞ = 2 − ⎜ sin 2 + sin 2 ⎟ 2⎝ 8 8 ⎠ 1⎛ π π⎞ ⎛ 3π π⎞ = 2 − ⎜ sin 2 + cos2 ⎟ ⎜ do sin = cos ⎟ 2⎝ 8 8⎠ ⎝ 8 8⎠ 1 3 = 2− = 2 2 Baøi 9 : Chöùng minh : 16 sin 10o .sin 30o .sin 50o .sin 70o = 1 A cos 10o 1 Ta coù : A = = (16sin10ocos10o)sin30o.sin50o.sin70o cos 10 o cos 10 o 1 ⎛1⎞ o ( ⇔ A= 8 sin 20o ) ⎜ ⎟ cos 40o . cos 20o cos 10 ⎝2⎠ 1 o ( ⇔ A= 4 sin 200 cos 20o ) . cos 40o cos10 1 o ( ⇔ A= 2 sin 40o ) cos 40o cos10 1 cos 10o ⇔ A= sin 80 =o =1 cos10o cos 10o A B B C C A Baøi 10 : Cho ΔABC . Chöùng minh : tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 A+B π C Ta coù : = − 2 2 2 A+B C Vaäy : tg = cot g 2 2 A B tg + tg ⇔ 2 2 = 1 A B C 1 − tg .tg tg 2 2 2 ⎡ A B⎤ C A B ⇔ ⎢ tg + tg ⎥ tg = 1 − tg tg ⎣ 2 2⎦ 2 2 2 A C B C A B ⇔ tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 π π π π Baøi 11 : Chöùng minh : 8 + 4tg + 2tg + tg = cot g ( *) 8 16 32 32
  10. π π π π Ta coù : (*) ⇔ 8 = cot g − tg − 2tg − 4tg 32 32 16 8 cos a sin a cos a − sin a 2 2 Maø : cot ga − tga = − = sin a cos a sin a cos a cos 2a = = 2 cot g2a 1 sin 2a 2 Do ñoù : ⎡ π π⎤ π π (*) ⇔ ⎢ cot g − tg ⎥ − 2tg − 4tg = 8 ⎣ 32 32 ⎦ 16 8 ⎡ π π⎤ π ⇔ ⎢ 2 cot g − 2tg ⎥ − 4tg = 8 ⎣ 16 16 ⎦ 8 π π ⇔ 4 cot g − 4tg = 8 8 8 π ⇔ 8 cot g = 8 (hieån nhieân ñuùng) 4 Baøi :12 : Chöùng minh : ⎛ 2π ⎞ ⎛ 2π ⎞ 3 a/ cos2 x + cos2 ⎜ + x ⎟ + cos2 ⎜ − x⎟ = ⎝ 3 ⎠ ⎝ 3 ⎠ 2 1 1 1 1 b/ + + + = cot gx − cot g16x sin 2x sin 4x sin 8x sin16x ⎛ 2π ⎞ ⎛ 2π ⎞ a/ Ta coù : cos2 x + cos2 ⎜ + x ⎟ + cos2 ⎜ − x⎟ ⎝ 3 ⎠ ⎝ 3 ⎠ 1 1⎡ ⎛ 4π ⎞ ⎤ 1 ⎡ ⎛ 4π ⎞⎤ = (1 + cos 2x ) + ⎢1 + cos ⎜ 2x + ⎟ ⎥ + ⎢1 + cos ⎜ − 2x ⎟ ⎥ 2 2⎣ ⎝ 3 ⎠⎦ 2 ⎣ ⎝ 3 ⎠⎦ 3 1⎡ ⎛ 4π ⎞ ⎛ 4π ⎞⎤ = 2 + ⎢cos 2x + cos ⎜ 2x + 3 ⎟ + cos ⎜ 3 − 2x ⎟ ⎥ 2⎣ ⎝ ⎠ ⎝ ⎠⎦ 3 1⎡ 4π ⎤ = + 2 ⎢cos 2x + 2 cos 2x cos 3 ⎥ 2⎣ ⎦ 3 1⎡ ⎛ 1 ⎞⎤ = + ⎢cos 2x + 2 cos 2x ⎜ − ⎟ ⎥ 2 2⎣ ⎝ 2 ⎠⎦ 3 = 2 cos a cos b sin b cos a − sin a cos b b/ Ta coù : cot ga − cot gb = − = sin a sin b sin a sin b sin ( b − a ) = sin a sin b sin ( 2x − x ) 1 Do ñoù : cot gx − cot g2x = = (1 ) sin x sin 2x sin 2x sin ( 4x − 2x ) 1 cot g2x − cot g4x = = ( 2) sin 2x sin 4x sin 4x
  11. sin ( 8x − 4x ) 1 cot g4x − cot g8x = = ( 3) sin 4x sin 8x sin 8x sin (16x − 8x ) 1 cot g8x − cot g16x = = (4) sin16x sin 8x sin16x Laáy (1) + (2) + (3) + (4) ta ñöôïc 1 1 1 1 cot gx − cot g16x = + + + sin 2x sin 4x sin 8x sin16x Baøi 13 : Chöùng minh : 8sin3 180 + 8sin2 180 = 1 Ta coù: sin180 = cos720 ⇔ sin180 = 2cos2360 - 1 ⇔ sin180 = 2(1 – 2sin2180)2 – 1 ⇔ sin180 = 2(1 – 4sin2180+4sin4180)-1 ⇔ 8sin4180 – 8sin2180 – sin180 + 1 = 0 (1 ) ⇔ (sin180 – 1)(8sin3180 + 8sin2180 – 1) = 0 ⇔ 8sin3180 + 8sin2180 – 1 = 0 (do 0 < sin180 < 1) Caùch khaùc : Chia 2 veá cuûa (1) cho ( sin180 – 1 ) ta coù ( 1 ) ⇔ 8sin2180 ( sin180 + 1 ) – 1 = 0 Baøi 14 : Chöùng minh : 1 a/ sin4 x + cos4 x = ( 3 + cos 4x ) 4 1 b/ sin 6x + cos 6x = ( 5 + 3 cos 4x ) 8 1 c/ sin8 x + cos8 x = ( 35 + 28 cos 4x + cos 8x ) 64 a/ Ta coù: sin 4 x + cos4 x = ( sin 2 x + cos2 x ) − 2 sin 2 x cos2 x 2 2 =1− sin2 2x 4 1 = 1 − (1 − cos 4 x ) 4 3 1 = + cos 4x 4 4 b/ Ta coù : sin6x + cos6x = ( sin 2 x + cos2 x )( sin 4 x − sin 2 x cos2 x + cos4 x ) 1 = ( sin4 x + cos4 x ) − sin2 2x 4 ⎛3 1 ⎞ 1 = ⎜ + cos 4x ⎟ − (1 − cos 4x ) ( do keát quaû caâu a ) ⎝4 4 ⎠ 8 3 5 = cos 4x + 8 8 c/ Ta coù : sin 8 x + cos8 x = ( sin 4 x + cos4 x ) − 2 sin 4 x cos4 x 2
  12. 1 2 ( 3 + cos 4x ) − sin4 2x 2 = 16 16 2 1 1 ⎡1 ⎤ = 16 ( 9 + 6 cos 4x + cos2 4x ) − ⎢ (1 − cos 4x ) ⎥ 8 ⎣2 ⎦ 9 3 1 1 = + cos 4x + (1 + cos 8x ) − (1 − 2 cos 4x + cos2 4x ) 16 8 32 32 9 3 1 1 1 = + cos 4x + cos 8x + cos 4x − (1 + cos 8x ) 16 8 32 16 64 35 7 1 = + cos 4x + cos 8x 64 16 64 Baøi 15 : Chöùng minh : sin 3x.sin3 x + cos 3x.cos3 x = cos3 2x Caùch 1: Ta coù : sin 3x.sin3 x + cos 3x.cos3 x = cos3 2x = ( 3sin x − 4 sin 3 x ) sin 3 x + ( 4 cos3 x − 3 cos x ) cos3 x = 3sin4 x − 4 sin6 x + 4 cos6 x − 3cos4 x = 3 ( sin 4 x − cos4 x ) − 4 ( sin 6 x − cos6 x ) = 3 ( sin 2 x − cos2 x )( sin 2 x + cos2 x ) −4 ( sin 2 x − cos2 x )( sin 4 x + sin 2 x cos2 x + cos4 x ) = −3 cos 2x + 4 cos 2x ⎡1 − sin 2 x cos2 x ⎤ ⎣ ⎦ ⎛ 1 ⎞ = −3 cos 2x + 4 cos 2x ⎜ 1 − sin 2 2x ⎟ ⎝ 4 ⎠ ⎡ ⎛ 1 ⎞⎤ = cos 2x ⎢ −3 + 4 ⎜ 1 − sin 2 2x ⎟ ⎥ ⎣ ⎝ 4 ⎠⎦ = cos 2x (1 − sin 2 2x ) = cos3 2x Caùch 2 : Ta coù : sin 3x.sin3 x + cos 3x.cos3 x ⎛ 3sin x − sin 3x ⎞ ⎛ 3 cos x + cos 3x ⎞ = sin 3x ⎜ ⎟ + cos 3x ⎜ ⎟ ⎝ 4 ⎠ ⎝ 4 ⎠ 3 1 = ( sin 3x sin x + cos 3x cos x ) + ( cos2 3x − sin2 3x ) 4 4 3 1 = cos ( 3x − x ) + cos 6x 4 4 1 = ( 3cos 2x + cos 3.2x ) 4 1 = ( 3 cos 2x + 4 cos3 2x − 3 cos 2x ) ( boû doøng naøy cuõng ñöôïc) 4 = cos3 2x
  13. 3 +1 Baøi 16 : Chöùng minh : cos12o + cos18o − 4 cos15o.cos 21o cos 24 o = − 2 Ta coù : cos12o + cos 18o − 4 cos15o ( cos 21o cos 24o ) = 2 cos15o cos 3o − 2 cos15o ( cos 45o + cos 3o ) = 2 cos15o cos 3o − 2 cos15o cos 45o − 2 cos15o cos 3o = −2 cos15o cos 45o = − ( cos 60o + cos 30o ) 3 +1 =− 2 Baøi 17 : Tính P = sin2 50o + sin2 70 − cos 50o cos70o 1 1 1 Ta coù : P = (1 − cos100o ) + (1 − cos140o ) − ( cos120o + cos 20o ) 2 2 2 1 1⎛ 1 ⎞ P = 1 − ( cos100o + cos140o ) − ⎜ − + cos 20o ⎟ 2 2⎝ 2 ⎠ 1 1 P = 1 − ( cos120o cos 20o ) + − cos 20o 4 2 5 1 1 5 P = + cos 20o − cos 20o = 4 2 2 4 8 3 Baøi 18 : Chöùng minh : tg30o + tg40o + tg50o + tg60o = cos 20o 3 sin ( a + b ) AÙp duïng : tga + tgb = cos a cos b Ta coù : ( tg50 + tg40 ) + ( tg30o + tg60o ) o o sin 90o sin 90o = + cos 50o cos 40o cos 30o cos 60o 1 1 = + sin 40 cos 40 o o 1 cos 30o 2 2 2 = + sin 80 o cos 30o ⎛ 1 1 ⎞ = 2⎜ + ⎟ ⎝ cos10 cos 30o ⎠ o ⎛ cos 30o + cos10o ⎞ = 2⎜ o ⎟ ⎝ cos10 cos 30 ⎠ o cos 20p cos10o =4 cos10o cos 30o 8 3 = cos 20o 3 Baøi 19 : Cho ΔABC , Chöùng minh :
  14. A B C a/ sin A + sin B + sin C = 4 cos cos cos 2 2 2 A B C b/ socA + cos B + cos C = 1 + 4 sin sin sin 2 2 2 c/ sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C d/ cos2 A + cos2 B + cos2 C = −2 cos A cos B cos C e/ tgA + tgB + tgC = tgA.tgB.tgC f/ cot gA.cot gB + cot gB.cot gC + cot gC.cot gA = 1 A B C A B C g/ cot g + cot g + cot g = cot g .cot g .cot g 2 2 2 2 2 2 A+B A−B a/ Ta coù : sin A + sin B + sin C = 2sin cos + sin ( A + B ) 2 2 A + B⎛ A−B A + B⎞ = 2 sin ⎜ cos + cos ⎟ 2 ⎝ 2 2 ⎠ C A B ⎛ A + B π C⎞ = 4 cos cos cos ⎜ do = − ⎟ 2 2 2 ⎝ 2 2 2⎠ A+B A−B b/ Ta coù : cos A + cos B + cos C = 2 cos cos − cos ( A + B ) 2 2 A+B A−B ⎛ A+B ⎞ = 2 cos cos − ⎜ 2 cos2 − 1⎟ 2 2 ⎝ 2 ⎠ A+B⎡ A−B A + B⎤ = 2 cos ⎢ cos 2 − cos 2 ⎥ + 1 2 ⎣ ⎦ A+B A ⎛ B⎞ = −4 cos sin sin ⎜ − ⎟ + 1 2 2 ⎝ 2⎠ C A B = 4 sin sin sin + 1 2 2 2 c/ sin 2A sin 2B + sin 2C = 2 sin ( A + B ) cos ( A − B ) + 2 sin C cos C = 2 sin C cos(A − B) + 2sin C cos C = 2sin C[cos(A − B) − cos(A + B) ] = −4 sin Csin A sin( − B) = 4 sin C sin A sin B d/ cos2 A + cos2 B + cos2 C 1 = 1 + ( cos 2A + cos 2B ) + cos2 C 2 = 1 + cos ( A + B ) cos ( A − B ) + cos2 C = 1 − cos C ⎡cos ( A − B ) − cos C ⎤ do ( cos ( A + B ) = − cos C ) ⎣ ⎦ = 1 − cos C ⎡cos ( A − B ) + cos ( A + B ) ⎤ ⎣ ⎦ = 1 − 2 cos C.cos A.cos B e/ Do a + b = π − C neân ta coù tg ( A + B ) = −tgC
  15. tgA + tgB ⇔ = −tgC 1 − tgAtgB ⇔ tgA + tgB = −tgC + tgAtgBtgC ⇔ tgA + tgB + tgC = tgAtgBtgC f/ Ta coù : cotg(A+B) = - cotgC 1 − tgAtgB ⇔ = − cot gC tgA + tgB cot gA cot gB − 1 ⇔ = − cot gC (nhaân töû vaø maãu cho cotgA.cotgB) cot gB + cot gA ⇔ cot gA cot gB − 1 = − cot gC cot gB − cot gA cot gC ⇔ cot gA cot gB + cot gB cot gC + cot gA cot gC = 1 A+B C g/ Ta coù : tg = cot g 2 2 A B tg + tg ⇔ 2 2 = cot g C A B 2 1 − tg tg 2 2 A B cot g + cot g ⇔ 2 2 = cot g C (nhaân töû vaø maãu cho cotg A .cotg B ) A B 2 2 2 cot g .cot g − 1 2 2 A B A B C C ⇔ cot g + cot g = cot g cot g cot g − cot g 2 2 2 2 2 2 A B C A B C ⇔ cot g + cot g + cot g = cot g .cot g .cot g 2 2 2 2 2 2 Baøi 20 : Cho ΔABC . Chöùng minh : cos2A + cos2B + cos 2C + 4cosAcosBcosC + 1 = 0 Ta coù : (cos2A + cos2B) + (cos2C + 1) = 2 cos (A + B)cos(A - B) + 2cos2C = - 2cosCcos(A - B) + 2cos2C = - 2cosC[cos(A – B) + cos(A + B)] = - 4cosAcosBcosC Do ñoù : cos2A + cos2B + cos2C + 1 + 4cosAcosBcosC = 0 Baøi 21 : Cho ΔABC . Chöùng minh : 3A 3B 3C cos3A + cos3B + cos3C = 1 - 4 sin sin sin 2 2 2 Ta coù : (cos3A + cos3B) + cos3C 3 3 3C = 2 cos (A + B) cos (A − B) + 1 − 2sin2 2 2 2 3 3 3C Maø : A + B = π − C neân ( A + B ) = π − 2 2 2
  16. 3 3π 3C => cos ( A + B ) = cos ⎛ − ⎞ ⎜ ⎟ 2 ⎝ 2 2 ⎠ ⎛ π 3C ⎞ = − cos ⎜ − ⎟ ⎝2 2 ⎠ 3C = − sin 2 Do ñoù : cos3A + cos3B + cos3C 3C 3 ( A − B) 3C = −2 sin cos − 2sin2 +1 2 2 2 3C ⎡ 3 ( A − B) 3C ⎤ = −2 sin ⎢cos + sin ⎥ +1 2 ⎣ 2 2 ⎦ 3C ⎡ 3 ( A − B) 3 ⎤ = −2 sin ⎢cos − cos ( A + B ) ⎥ + 1 2 ⎣ 2 2 ⎦ 3C 3A −3B = 4 sin sin sin( ) +1 2 2 2 3C 3A 3B = −4 sin sin sin +1 2 2 2 Baøi 22 : A, B, C laø ba goùc cuûa moät tam giaùc. Chöùng minh : sin A + sin B − sin C A B C = tg tg cot g cos A + cos B − cos C + 1 2 2 2 A+B A−B C C 2 sin cos − 2 sin cos sin A + sin B − sin C 2 2 2 2 Ta coù : = cos A + cos B − cos C + 1 A+B A−B C 2 cos cos + 2 sin 2 2 2 2 C⎡ A−B C⎤ A−B A+B 2 cos ⎢cos − sin ⎥ cos − cos 2⎣ 2 2⎦ C 2 2 = = cot g . C⎡ A−B C⎤ 2 cos A − B + cos A + B 2 sin ⎢cos + sin ⎥ 2⎣ 2 2⎦ 2 2 A ⎛ B⎞ −2 sin .sin ⎜ − ⎟ C 2 ⎝ 2⎠ = cot g . 2 A B 2 cos .cos 2 2 C A B = cot g .tg .tg 2 2 2 Baøi 23 : Cho ΔABC . Chöùng minh : A B C B C A C A B sin cos cos + sin cos cos + sin cos cos 2 2 2 2 2 2 2 2 2 A B C A B B C A C = sin sin sin + tg tg + tg tg + tg tg ( *) 2 2 2 2 2 2 2 2 2
  17. A+B π C ⎛ A B⎞ C Ta coù : = − vaäy tg ⎜ + ⎟ = cot g 2 2 2 ⎝ 2 2⎠ 2 A B tg + tg ⇔ 2 2 = 1 A B C 1 − tg tg tg 2 2 2 ⎡ A B⎤ C A B ⇔ ⎢ tg + tg ⎥ tg = 1 − tg tg ⎣ 2 2⎦ 2 2 2 A C B C A B ⇔ tg tg + tg tg + tg tg = 1 (1) 2 2 2 2 2 2 A B C B C A C A B Do ñoù : (*) sin cos cos + sin cos cos + sin cos cos 2 2 2 2 2 2 2 2 2 A B C = sin sin sin + 1 (do (1)) 2 2 2 A⎡ B C B C⎤ A⎡ B C C B⎤ ⇔ sin ⎢cos cos − sin sin ⎥ + cos ⎢sin cos + sin cos ⎥ = 1 2⎣ 2 2 2 2⎦ 2⎣ 2 2 2 2⎦ A B+C A B+C ⇔ sin cos + cos sin =1 2 2 2 2 A+B+C π ⇔ sin = 1 ⇔ sin = 1 ( hieån nhieân ñuùng) 2 2 A B C 3 + cos A + cos B + cos C Baøi 24 : Chöùng minh : tg + tg + tg = ( *) 2 2 2 sin A + sin B + sin C Ta coù : A+B A−B ⎡ C⎤ cos A + cos B + cos C + 3 = 2 cos cos + ⎢1 − 2 sin 2 ⎥ + 3 2 2 ⎣ 2⎦ C A−B C = 2sin cos + 4 − 2sin2 2 2 2 C⎡ A−B C⎤ = 2 sin ⎢ cos − sin ⎥ + 4 2⎣ 2 2⎦ C⎡ A−B A + B⎤ = 2 sin ⎢cos − cos +4 2⎣ 2 2 ⎥ ⎦ C A B = 4 sin sin .sin + 4 (1) 2 2 2 A+B A−B sin A + sin B + sin C = 2sin cos + sin C 2 2 C A−B C C = 2 cos cos + 2 sin cos 2 2 2 2 C⎡ A−B A + B⎤ = 2 cos ⎢ cos + cos 2⎣ 2 2 ⎥ ⎦ C A B = 4 cos cos cos (2) 2 2 2 Töø (1) vaø (2) ta coù :
  18. A B C A B C sin sin sin sin sin sin + 1 (*) ⇔ 2 + 2 + 2 = 2 2 2 A B C A B C cos cos cos cos cos cos 2 2 2 2 2 2 A⎡ B C⎤ B⎡ A C⎤ C⎡ A B⎤ ⇔ sin ⎢cos cos ⎥ + sin ⎢ cos cos ⎥ + sin ⎢ cos cos ⎥ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 2⎣ 2 2⎦ A B C = sin sin sin + 1 2 2 2 A⎡ B C B C⎤ A⎡ B C C B⎤ ⇔ sin ⎢cos cos − sin sin ⎥ + cos ⎢sin cos + sin cos ⎥ = 1 2⎣ 2 2 2 2⎦ 2⎣ 2 2 2 2⎦ A B+C A B+C ⇔ sin .cos + cos sin =1 2 2 2 2 ⎡A + B + C⎤ ⇔ sin ⎢ ⎥ =1 ⎣ 2 ⎦ π ⇔ sin = 1 ( hieån nhieân ñuùng) 2 A B C sin sin sin Baøi 25 : Cho ΔABC . Chöùng minh: 2 + 2 + 2 =2 B C C A A B cos cos cos cos cos cos 2 2 2 2 2 2 Caùch 1 : A B A A B B sin sin sin cos + sin cos Ta coù : 2 + 2 = 2 2 2 2 B C C A A B C cos cos cos cos cos cos cos 2 2 2 2 2 2 2 A+B A−B sin cos 1 sin A + sin B 2 2 = = A 2 cos cos cos B C A B C cos cos cos 2 2 2 2 2 2 C A−B ⎛ A − B⎞ cos .cos cos ⎜ ⎟ = 2 2 = ⎝ 2 ⎠ A B C A B cos .cos .cos cos cos 2 2 2 2 2 ⎛ A − B⎞ C A−B A+B cos ⎜ ⎟ sin cos + cos ⎝ 2 ⎠ 2 2 2 Do ñoù : Veá traùi = + = A B A B A B cos cos cos cos cos cos 2 2 2 2 2 2 A B 2 cos cos = 2 2 =2 A B cos cos 2 2 Caùch 2 :
  19. B+C A+C A+B cos cos cos Ta coù veá traùi = 2 + 2 + 2 B C C A A B cos cos cos cos cos cos 2 2 2 2 2 2 B C B C A C A C cos cos − sin sin cos cos − sin sin = 2 2 2 2 + 2 2 2 2 B C C A cos cos cos cos 2 2 2 2 A B A B cos cos − sin sin + 2 2 2 2 A B cos cos 2 2 ⎡ B C A C A B⎤ = 3 − ⎢ tg tg + tg tg + tg tg ⎥ ⎣ 2 2 2 2 2 2⎦ A B B C A B Maø : tg tg + tg tg + tg tg = 1 2 2 2 2 2 2 (ñaõ chöùng minh taïi baøi 10 ) Do ñoù : Veá traùi = 3 – 1 = 2 A B C Baøi 26 : Cho ΔABC . Coù cot g , cot g , cot g theo töù töï taïo caáp soá coäng. 2 2 2 A C Chöùng minh cot g .cot g = 3 2 2 A B C Ta coù : cot g , cot g , cot g laø caáp soá coäng 2 2 2 A C B ⇔ cot g + cot g = 2 cot g 2 2 2 A+C B sin 2 cos ⇔ 2 = 2 A C B sin sin sin 2 2 2 B B cos 2 cos ⇔ 2 = 2 A C B sin sin sin 2 2 2 1 2 B ⇔ = (do 0 0 ) A C A+C 2 sin sin cos 2 2 2 A C A C cos cos − sin sin ⇔ 2 2 2 2 = 2 ⇔ cot g A cot g C = 3 A C 2 2 sin .sin 2 2 Baøi 27 : Cho ΔABC . Chöùng minh :
  20. 1 1 1 1⎡ A B C A B C⎤ + + = ⎢ tg + tg + tg + cot g + cot g + cot g ⎥ sin A sin B sin C 2 ⎣ 2 2 2 2 2 2⎦ A B C A B C Ta coù : cot g + cot g + cot g = cot g .cot g .cot g 2 2 2 2 2 2 (Xem chöùng minh baøi 19g ) sin α cos α 2 Maët khaùc : tgα + cot gα = + = cos α sin α sin 2α 1⎡ A B C A B C⎤ Do ñoù : ⎢ tg + tg + tg + cotg + cotg + cotg ⎥ 2⎣ 2 2 2 2 2 2⎦ 1⎡ A B C⎤ 1 ⎡ A B C⎤ = ⎢ tg + tg + tg ⎥ + ⎢cotg + cotg + cotg ⎥ 2⎣ 2 2 2⎦ 2 ⎣ 2 2 2⎦ 1⎡ A A⎤ 1 ⎡ B B⎤ 1 ⎡ C C⎤ = ⎢ tg + cot g ⎥ + ⎢ tg + cot g ⎥ + ⎢ tg + cot g ⎥ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 2⎣ 2 2⎦ 1 1 1 = + + sin A sin B sin C BAØI TAÄP 1. Chöùng minh : π 2π 1 a/ cos − cos = 5 5 2 cos15 + sin15 o o b/ = 3 cos15o − sin15o 2π 4π 6π 1 c/ cos + cos + cos =− 7 7 7 2 d/ sin 2x sin 6x + cos 2x.cos 6x = cos3 4x 3 3 e/ tg20o.tg40o.tg60o.tg80o = 3 π 2π 5π π 8 3 π f/ tg + tg + tg + tg = cos 6 9 18 3 3 9 π 2π 3π 4π 5π 6π 7π 1 g/ cos .cos .cos .cos .cos .cos .cos = 15 15 15 15 15 15 15 27 ⎡π ⎤ ⎡π ⎤ h/ tgx.tg ⎢ − x ⎥ .tg ⎢ + x ⎥ = tg3x ⎣3 ⎦ ⎣3 ⎦ k/ tg20o + tg40o + 3tg20o.tg40o = 3 3 e/ sin 20o.sin 40o.sin 80o = 8 m/ tg5 .tg55 .tg65 .tg75 = 1 o o o o ⎧sin x = 2 sin ( x + y ) ⎪ 2. Chöùng minh raèng neáu ⎨ π ⎪ x + y ≠ ( 2k + 1) ( k ∈ z ) ⎩ 2 sin y thì tg ( x + y ) = cos y − 2 3. Cho ΔABC coù 3 goùc ñeàu nhoïn vaø A ≥ B ≥ C
Đồng bộ tài khoản