Phương pháp giải hệ đối xứng loại 1- Phạm Thành Luân

Chia sẻ: Trần Bá Trung5 | Ngày: | Loại File: PDF | Số trang:4

0
1.008
lượt xem
216
download

Phương pháp giải hệ đối xứng loại 1- Phạm Thành Luân

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu " Phương pháp giải hệ đối xứng loại 1- Phạm Thành Luân " nhằm giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập toán một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình, nâng cao khả năng vận dụng kiến thức vào trong các kỳ thi. Chúc các bạn học tốt...

Chủ đề:
Lưu

Nội dung Text: Phương pháp giải hệ đối xứng loại 1- Phạm Thành Luân

  1. Baøi 2: Ví duï 2: ⎧ 1 1 HEÄ PHÖÔNG TRÌNH ÑOÁI XÖÙNG LOAÏI 1 ⎪x + y + x + y = 5 ⎪ Giaûi heä phöông trình : ⎨ ⎪x 2 + y2 + 1 + 1 = 9 I. KIEÁN THÖÙC CAÀN NHÔÙ. ⎪ ⎩ x 2 y2 ⎧f(x,y) = 0 (ÑH Ngoaïi Thöông TPHCM, Khoái A, D naêm 1997) 1. Daïng : (I) ⎨ vôùi f(x,y) = f(y,x) vaø g(x,y) = g(y,x) ⎩g(x,y) = 0 Giaûi 2. Caùch giaûi: Ñöa heä (I) veà heä : ⎧ 1 ⎧ 2 1 2 ⎪u = x + x ⎪x + 2 = u − 2 ⎧F(S,P) = 0 ⎪ ⎪ x (II) ⎨ vôùi S = x + y , P = xy Ñaët ⎨ ⇔⎨ 1 ⎪y + 1 = v2 − 2 ⎩G(S,P) = 0 ⎪v = y + 2 Giaûi heä (II) ⇒ S,P vaø x,y laø nghieäm cuûa phöông trình : ⎪ ⎩ y ⎪ ⎩ y2 t 2 − St + P = 0 ⎧u + v = 5 ⎪ ⎧u + v = 5 ⎪ ⎧u + v = 5 Heä ⇔ ⎨ 2 2 ⇔⎨ 2 ⇔⎨ Ñieàu kieän ñeå (I) coù nghieäm laø heä (II) coù nghieäm thoûa: S2 − 4P ≥ 0 . ⎪ u + v = 13 ⎪(u + v) − 2uv = 13 ⎩ uv = 6 ⎩ ⎩ II. CAÙC VÍ DUÏ: ⇒ u,v laø nghieäm cuûa phöông trình : α 2 − 5α + 6 = 0 ⎧u = 2 ⎧u = 3 Ví duï 1: ⇔ α = 3∨ x = 2 ⇒ ⎨ ∨⎨ ⎧x 2 + y2 + xy = 7 ⎩v = 3 ⎩v = 2 ⎪ Giaûi heä phöông trình : ⎨ ⎧ 1 ⎪x + y + xy = 5 ⎩ ⎪x + x = 2 ⎧x = 1 ⎧x = 1 ⎪ ⎪ ⎪ Giaûi * u = 2, v = 3: ⇔ ⎨ ⇔⎨ 3+ 5 ∨⎨ 3− 5 ⎪y + 1 = 3 ⎪y = ⎪y = Ñaët s = x + y, p = xy, ta coù: ⎪ y ⎩ 2 ⎩ 2 ⎩ ⎧s2 − p = 7 ⎧s2 + s − 12 = 0 ⎪ ⎪ ⎧s = −4 Heä ⇔ ⎨ ⇔⎨ ⇔⎨ ⎧ 1 ⎪s + p = 5 ⎪p = 5 − s ⎩p = 9 ⎪x + x = 3 ⎧x = 1 ⎧ 3− 5 ⎩ ⎩ ⎪ ⎪ ⎪x = * u = 3, v = 2: ⇔ ⎨ ⇔⎨ 3− 5 ∨⎨ 2 (loaïi vì khoâng thoûa s2 − 4p ≥ 0 ) ⎪y + 1 = 2 ⎪y = ⎪y = 1 ⎪ y ⎩ 2 ⎩ ⎧s = 3 ⎧x = 1 ⎧x = 2 ⎩ ∨⎨ ⇔⎨ ∨⎨ vaäy nghieäm (1, 2), (2, 1). ⎩p = 2 ⎩y = 2 ⎩y = 1 ⎛ 3− 5 ⎞ ⎛ 3− 5 ⎞ ⎛3+ 5 ⎞ ⎛3− 5 ⎞ ⇒ nghieäm heä: ⎜ 1, ⎜ ⎟ ; ⎜ 1, ⎟⎜ ,1 ⎟ ; ⎜ ,1⎟ ⎝ 2 ⎟⎜ ⎠⎝ 2 ⎟⎜ 2 ⎠⎝ ⎟⎜ 2 ⎠⎝ ⎟ ⎠ 79 80
  2. Ví duï 3: ⎧u + v = 5 ⎪ ⎧u + v = 5 ⎪ ⎧u + v = 5 Tìm caùc giaù trò cuûa a ñeå heä sau ñaây coù ñuùng 2 nghieäm. ⇔⎨ 2 2 ⇔⎨ 2 ⇔⎨ ⎪ u + v = 53 ⎪(u + v) − 2uv = 53 ⎩ uv = −14 ⎩ ⎩ ⎧x 2 + y2 = 2(1 + a) ⎪ ⎨ ⎧u = 7 ⎧ u = −2 2 ⇒ u,v laø nghieäm phöông trình: x 2 − 5x − 14 = 0 ⇔ ⎨ ∨⎨ ⎪(x + y) = 4 ⎩ ⎩ v = −2 ⎩v = 7 (ÑH Y Döôïc TPHCM naêm 1998). ⎧ 1 Giaûi ⎪x + x = 7 ⎪ ⎧ ⎪x = 7 + 45 ⎧ ⎪x = 7 − 45 ⎧x 2 + y2 = 2(1 + a) ⎧(x + y)2 − 2xy = 2(1 + a) Vôùi ⎨ ⇒⎨ 2 ; ⎨ 2 ⎪ Ta coù: ⎨ ⎪ ⇔⎨ ⎪y + 1 = −2 ⎪y = −1 ⎪y = −1 2 2 ⎪ y ⎩ ⎩ ⎪(x + y) = 4 ⎩ ⎪(x + y) = 4 ⎩ ⎩ ⎧xy = 1 − a ⎧xy = 1 − a ⎧ 1 ⇔⎨ ∨⎨ ⎪x + x = −2 ⎪x = −1 ⎪ ⎧ ⎧x = −1 ⎪ ⎩x + y = 2 ⎩x + y = −2 Vôùi ⎨ ⇒⎨ 7 + 45 ; ⎨ 7 − 45 Ñieàu kieän heä coù nghieäm laø: ⎪y + 1 = 7 ⎪y = ⎪y = ⎪ y ⎩ 2 ⎩ 2 (x + y)h2 − 4xy ≥ 0 ⇔ 4 − 4(1 − a) ≥ 0 ⇔ a ≥ 0 ⎩ ⇒ x,y laø nghieäm cuûa phöông trình : α 2 − 2α + 1 − a = 0 hoaëc III. BAØI TAÄP ÑEÀ NGHÒ 2 α + 2α + 1 − a = 0 ⎧x + y = 2a − 1 ⎪ Coù cuøng bieät soá: ∆ ' = 1 − (1 − a) = a 2.1. Cho heä phöông trình: ⎨ 2 2 2 ⎪x + y = a + 2a − 3 ⎩ Vaø coù 4 nghieäm khaùc nhau: α = 1 ± a, α ' = −1 ± a khi a > 0 Ñònh a ñeå heä coù nghieäm (x, y) vaø xy nhoû nhaát. Neân chæ ñuùng 2 nghieäm khi a = 0. ⇒ α = x = y = 1, α ' = x = y = −1 . ⎧(x + 1)(y + 1) = m + 4 Toùm laïi heä coù ñuùng hai nghieäm: (1, 1); (-1, -1) khi a = 0. 2.2. Cho heä phöông trình: ⎨ Ví duï 4: ⎩xy(x + y) = 3m 1. Ñònh m ñeå heä coù nghieäm ⎧ ⎛ 1 ⎞ ⎪(x + y) ⎜ 1 + ⎟=5 2. Ñònh m ñeå heä coù 4 nghieäm phaân bieät ⎪ ⎝ xy ⎠ Giaûi heä phöông trình : ⎨ ⎪x + y + yx = a + 1 ⎧ 2.3. Cho heä phöông trình: ⎨ 2 ⎪(x 2 + y2 ) ⎛ 1 + 1 = 49 ⎞ 2 ⎪x y + y x = a ⎩ ⎪ ⎜ ⎜ ⎟ ⎟ ⎩ ⎝ x 2 y2 ⎠ Ñònh a ñeå heä coù ít nhaát moät nghieäm (x, y) thoûa ñieàu kieän: x > 0 vaø y > (ÑH Ngoaïi Thöông Khoái A naêm 1999). 0. Giaûi ⎧x + y + xy = a ⎪ ⎧⎛ 2.4. Cho heä phöông trình: ⎨ 2 1⎞ ⎛ 1⎞ ⎧ 1 2 ⎪x y + xy = 3a − 8 ⎪⎜ x + ⎟ + ⎜ y + ⎟ = 5 ⎩ ⎪⎝ x⎠ ⎝ y⎠ ⎪x + x = u ⎪ Heä ⇔ ⎨ Ñaët ⎨ 7 a. Giaûi heä vôùi a = ⎪y + 1 = v 2 2 ⎪⎛ 1⎞ ⎛ 1⎞ 2 ⎪⎜ x + x ⎟ + ⎜ y + y ⎟ = 53 ⎪ ⎩ y b. Vôùi giaù trò naøo cuûa a thì heä coù nghieäm. ⎩⎝ ⎠ ⎝ ⎠ 81 82
  3. Höôùng Daãn Vaø Giaûi Toùm Taét. ⎧S = 3 * ⎨ thì x vaø y laø nghieäm phöông trình: t 2 − 3t + m = 0 ⎩P = m ⎧s = 2a − 1 ⎧s = 2a − 1 9 ⎧s = x + y ⎪2 ⎪ Phöông trình coù nghieäm ⇔ ∆ 2 = 9 − 4m ≥ 0 ⇔ m ≤ . 2.1. Ñaët ⎨ Heä ⇔ ⎨s − 2p = a + 2a − 3 ⇔ ⎨2p = 3a2 − 6a + 4 2 4 ⎩ p = xy ⎪2 ⎪2 9 ⎩s ≥ 4p ⎩s ≥ 4p Toùm laïi heä coù nghieäm ⇔ m ≤ −2 3 ∨ m ≥ 2 3 ∨ m ≤ 4 ⎧ ⎪s = 2a − 1 ⎧ ∆1 > 0 ⎪ 2. Ñeå heä coù 4 nghieäm phaân bieät ⇔ ⎨ ⇔ m < −2 3 ⎪ ⇔ ⎨2p = 3a2 − 6a + 4 ⎩∆2 > 0 ⎪ ⎪2 − 2 ≤ a ≤ 2 + 2 ⎧ S + P = a + 1 ⎧S = a ⎧S = 1 ⎪ ⎩ 2 2 2.3. Heä ⇔ ⎨ ⇔⎨ ∨⎨ ⎩SP = a ⎩P = 1 ⎩P = a 3a2 Ñaët f(a) = − 3a + 2, f '(a) = 3a − 3, f '(a) = 0 ⇔ a = 1 ⎧S > 0 2 ⎧S = a ⎪ Baûng bieán thieân: * Vôùi ⎨ Ñieàu kieän x > 0, y > 0 laø: ⎨P > 0 ⇔a≥2 ⎩ P =1 ⎪ 2 ⎩S − 4 ≥ 0 ⎧S > 0 ⎧S = 1 ⎪ 1 * Vôùi ⎨ Ñieàu kieän x > 0, y > 0 laø: ⎨P > 0 ⇔ 0
  4. ⎧x = 2 ⎧ 1 ⎪ ⎪x = ⇒⎨ 1 ∨⎨ 2 ⎪y = 2 ⎩ ⎪y = 2 ⎩ ⎧S + P = a b. ⎨ thì s, p laø 2 nghieäm cuûa phöông trình: ⎩SP = 3a − 8 α 2 − aα + 3a − 8 = 0 (1) Phöông trình coù nghieäm ⇔ ∆ = a2 − 4(3a − 8) ≥ 0 ⇔ a ≤ 4 ∨ a ≥ 8 Vôùi ñieàu kieän ñoù, phöông trình (1) coù nghieäm: a − a2 − 12a + 32 a + a2 − 12a + 32 α1 = , α2 = 2 2 a − a2 − 12a + 32 a + a2 − 12a + 32 . Choïn S = , P= 2 2 thì heä seõ coù nghieäm ⇔ s2 − 4p ≥ 0 ⇔ (a − 2)(a − 8) ≥ (a + 4) (a − 4)(a − 8) (2) a + a2 − 12a + 32 a − a2 − 12a + 32 . Choïn S = ,P= 2 2 thì heä coù nghieäm ⇔ s2 ≥ 4p ⇔ (a − 2)(a − 8) ≥ −(a + 4) (a − 4)(a − 8) (3) Töø (2) vaø (3) ⇒ (a − 2)(a − 8) ≥ − a + 4 (a − 4)(a − 8) (4) ⎡a ≤ 2 Vì (a − 2)(a − 8) ≥ 0 ⇔ ⎢ thì (4) thoûa. ⎣a ≥ 8 Khi a ∈ ( 2,4 ] thì (a − 2)(a − 8) < 0 (4) ⇔ (a − 2)2 (a − 8)2 ≤ (a + 4)2 (a − 4)(a − 8) 13 − 3 33 13 + 3 33 ⇔ 4a2 − 13a − 8 ≤ 0 ⇔ ≤a≤ 8 8 Keát hôïp vôùi caùc ñieàu kieän treân, ta thaáy heä coù nghieäm khi 13 + 3 33 a≤ hay a ≥ 8 . 8 85

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản