Quantum Physics
lượt xem 48
download
Quantum Physics
Many physical phenomena of great practical interest to engineers chemists, biologists, physicists, etc. were not in Gen. Phys. I & II Quantum Physics: The development of experimental equiment and techniques modern physics can go inside the microscopic world (atoms, electrons, nucleus, etc.) New principles, new laws for the microscopic (subatomic) world were discoverved
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Quantum Physics
 GENERAL PHYSICS III Optics & Quantum Physics
 What does we learn in Gen. Phys. III? Many physical phenomena of great practical interest to engineers, chemists, biologists, physicists, etc. were not in Gen. Phys. I & II Wave phenomena of light: Interference: what happens when two or more waves overlap? Interference! (Light passing through two slits give such kind of picture)
 • Diffraction: The image of an object is not exact in fine details. For example, the image of a circular disk is diffused Interference & diffraction can be analyzed if we regard light as a wave Quantum Physics: The development of experimental equiment and techniques modern physics can go inside the microscopic world (atoms, electrons, nucleus, etc.) New principles, new laws for the microscopic (subatomic) world were discoverved
 The basis concept: wave particle duality Examples: light wave photon electron electron wave etc… • Subatomic objects obey new mechanics: quantum mechanics On the basis of quatum mechanics we study structure and properties of atoms, nucleus, solids, laser rays, etc…
 Chapter XVII Interference of light §1. Interference of coherent sources of light §2. Interference in thin films §3. Interferometer
 §1. Interference of light from coherent sources: 1.1 Coherent sources of light: We consider an overlap of light that comes from two sources. A remarkable phenomen takes place, if two sources satisfy some following conditions: The sources are monochromatic. It means that they emit light of a single color. A monochromatic light corresponds to a sinusoidal electromagnetic wave with a single frequency f and wave length Two sources have the same frequency f (the same wave length ) Two souces are permanently in phase, or , at least, have any definite constant phase difference Then, two sources are called coherent sources.
 Notes: Recall the formula for a sinusoidal em wave: 2 y , t A cos A cos ft A cos t x x vt kx 2 kx v speed A amplitude 2 wavelength k wavenumber or wavevector f frequency 2f angular frequency Common sources of light do not emit monochromatic light (singlefrequency light) → However one can produce approximately monochromatic light: • by using filters which block all but a very narrow range of wave length • by using light from a laser
 1.2 Interference of light through narrow slits: Young’s experiment on doubleslit interference double (Thomas Young performed in 1800) Monochromatic light source at a great distance, Observation or a laser. Slit pattern screen
 Light (wavelength is incident on a twoslit (two narrow, rectangular openings) apparatus: I1 If either one of the slits is closed, a diffuse image of the other slit will appear S1 on the screen. (The image will be “diffuse” due to diffraction. We will discuss this effect in more detail later.) S2 Diffraction profile Monochromatic light screen If both slits are now open, we see (wavelength ) interference “fringes” (light and dark bands), corresponding to constructive S1 and destructive interference of the electricfield amplitudes from both slits. S2 Light fringes Dark fringes I
 Observer r1 S1 Light r2 d S2 Important quantity: path difference r2  r1 = The light density at the location of observer depends on the path difference A path difference corresponds to a phase difference of two waves at the observer’s point
 One has a simple formula for the path difference, , when the observer is far from sources. sources. (Assume 2 sources radiating in phase) Observer d r Normal to d When observer distance >> slit spacing (r >> d) : = dsin d The corresponding phase difference at the observer’s point: sin d
 At observer’s points that satisfy the condition = 0, ±1, ±2,... → two waves m m are in phase and reinforce each other, we say /d that there is constructive interference at these points y r /d Constructive = dsin= m Interference d 0 If m + 1)→ two waves I cancell each other → there is /d destructive interference Destructive L = dsin= (m + 1/ ) 2 Interference m=2 Usually we care about the linear “lines” of (as opposed to angular) constructive m=1 displacement y of the pattern interference: (because our screens are often m=0 = sin1(md flat): m=1 y = L tan m=2
 The slitspacing d is often large compared to so that small. , is Then we can use the small angle approximations to simplify our results: For small angles: (
 Example: S1 A laser of wavelength 633 nm is y incident on two slits separated by 0.125 mm. S2 I 1. What is the spacing between fringe maxima on a screen 2m away? y a. 1 m b. 1 mm c. 1 cm 2. If we increase the spacing between the slits, what will happen to y? a. decrease b. stay the same c. increase 3. If we instead use a green laser (smaller will? ), y a. decrease b. stay the same c. increase
 Example (continue) S1 A laser of wavelength 633 nm is y incident on two slits separated by 0.125 mm. S2 1. What is the spacing between fringe maxima on a screen 2m away? y a. 1 m b. 1 mm c. 1 cm First question: can we use the small angle approximation? d = 125 m; = 0.633 m d >> is small d sin = m i ~ d i i mi ( i d) y L( – L(2 – 1) ( = L = (2 m)(0.663 2 1) d) /d m)/125 = 0.01 m m 2. If we increase the spacing between the slits, what will happen to y? a. decrease b. stay the same c. increase 3. If we instead use a green laser (smaller will? ), y a. decrease b. stay the same c. increase
 Example (continue) S1 y A laser of wavelength 633 nm is incident on two slits separated by 0.125 mm. S2 1. What is the spacing between fringe maxima on a screen 2m away? y a. 1 m b. 1 mm c. 1 cm 2. If we increase the spacing between the slits, what will happen to y? a. decrease b. stay the same c. increase Since ~ 1/d, the spacing decreases. Note: This is a general phenomenon y – the “farfield” interference pattern varies inversely with slit dimensions. 3. If we instead use a green laser (smaller will? ), y a. decrease b. stay the same c. increase Since ~ the spacing decreases. y ,
 Note: If a monochromatic source is replaced by a white light one → how is the interference picture? We have known that the location of (light or dark) fringers depends on the wavelength therfore • At y = 0 (the center light fringer) the maxima for all wavelengths coincide → there is a white light fringer • The nearby fringers have spectrum colors (like in rainbow) • Far fringers are not visible (are diffused)
 §2. Interference in thin films: This kind of interference takes place when light reflects from a thin film (for example, a soap bubble, a thin layer of oil floating on water) In this case there is an overlap eye of light waves: one is reflected from the upper, the other from the lower surface. 2.1 Calculation of path difference of two light waves: First we consider the case that the incident light is monochromatic with the wavelength
 b: the thickness of the film n: the index of refraction path difference between the the reflected waves 1 & 2 By elementary geometry it is not difficult to obtain Using the formula one can eliminate i1 or i2 We must take into account one more effect: the phase shift of a wave after reflection
 We use the follwing theoretical results from Maxwell’s theory of electromagetism: • If na > nb → the phase shift of reflected wave relative to the incident na wave is zero nb • If na < nb → the phase shift of reflected wave relative to the incident wave is radian ( a half cycle) We can take into account this phase shift by introducing a complementary term in the formula of path difference Remark: The path difference of two reflected waves depends on b, i1 (or i2) At the points that satisfy m (m = 0, ±1, ±2,...) → we have cnstructive interference the points that satisfy = (m+1/2) destructive interference At →
CÓ THỂ BẠN MUỐN DOWNLOAD

GRE Physics Test
77 p  506  171

NEWTONIAN MECHANICS Schaum's College Physics
145 p  242  76

200 Puzzling Physics Problems: With Hints and Solutions
263 p  124  44

Chapter XXI Quantum Mechan
34 p  96  16

The Quantum Mechanics Solver 3
10 p  80  15

Principles and Applications of NanoMEMS Physics
264 p  65  14

Chapter XX Quantum theory of light
25 p  87  13

Chapter XXV Quantum Generators
17 p  77  10

The Structure of Physics
390 p  46  10

Quantum Dots: a Doorway to Nanoscale Physics
184 p  27  9

ADVANCES IN QUANTUM MECHANICS
790 p  42  9

Precision Physics of Simple Atomic Systems
214 p  32  8

SIMULATING THE PHYSICAL WORLD Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics
626 p  15  8

Reading Bohr Physics and Philosophy
238 p  29  5

THE PHYSICS OF MODERN BRACHYTHERAPY FOR ONCOLOGY
0 p  31  4

Gravitational Physics Exploring the Structure of Space and Time
128 p  16  3

The Physics of Communiction
0 p  18  3