SKKN: Một số phương pháp giải nhanh bài tập hóa học cho bồi dưỡng học sinh giỏi

Chia sẻ: somivang123

Tham khảo ý kiến của giáo viên: Trao đổi với giáo viên có kinh nghiệm về dạy đội tuyển học sinh giỏi, có kinh nghiệm về cách dạy các phương pháp giải nhanh bài tập hoá học. Bài SKKN: Một số phương pháp giải nhanh bài tập hóa học chao bồi dưỡng học sinh giỏi, mời các bạn tham khảo.

Bạn đang xem 10 trang mẫu tài liệu này, vui lòng download file gốc để xem toàn bộ.

Nội dung Text: SKKN: Một số phương pháp giải nhanh bài tập hóa học cho bồi dưỡng học sinh giỏi

 

  1. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - Một số phương pháp giải nhanh bài tập hóa học Áp dụng cho bồi dưỡng học sinh giỏi Trần Đăng Hưng THCS Nhật Tõn 1
  2. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - PHẦN A: ĐẶT VẤN ĐỀ I. LÍ DO CHỌN ĐỀ TÀI: Bác Hồ đã nói: “ Vì lợi ích mười năm phải trồng cây, vì lợi ích trăm năm phải trồng người”. Câu nói đó của Bác thật có ý nghĩa. Chúng ta đang sống trong thời đại cách mạng khoa học kỹ thuật phát triển không ngừng trong mọi lĩnh vực đời sống. Đảng ta đã lãnh đạo toàn dân theo con đường công nghiệp hoá - hiện đại hoá, đưa nước ta trở thành một nước công nông nghiệp phát triền. Để đáp ứng nhu cầu phát triển của đất nước, chúng ta cần phải có nhiều những nhân tài, những nhà khoa học giỏi, những giáo sư, kỹ sư, bác sĩ giỏi trong mọi lĩnh vực khoa học cũng như đời sống. Vì vậy, việc đào tạo một thế hệ trẻ có đầy đủ phẩm chất và năng lực để đáp ứng nhu cầu phát triển của đát nước là một vấn đề cần thiết nhằm đào tạo động lực góp phàn đưa đất nước phát triển nhanh. Trong những năm gần đây, số học sinh giỏi, số học sinh đạt giải quốc tế ngày càng tăng. Bộ giáo dục đã tổ chức triển khai những cuộc thi học sinh giỏi các cấp, trong đó có cuộc thi học sinh giỏi môn Hoá học THCS là cơ sở và nền tảng cho các cuộc thi quốc gia, quốc tế sau này. Để có những học sinh giỏi môn Hoá, những nhân tài trong ngành Hoá học thì việc phát hiện và bồi dưỡng học sinh giỏi Hoá học là một việc làm hết sức quan trọng và cần thiết. Công việc bồi dưỡng học sinh giỏi rất vất vả, để học sinh có thể phát triển được tối đa khả năng tư duy, sức sáng tạo của mình, thì người giáo viên cần có những phương pháp giảng dạy phù hợp, đưa ra được những cách giải cơ bản, độc đáo. Chính vì các lí do trên tôi đã chọn đề tài: “ Hướng dẫn học sinh một số phương pháp giúp giải nhanh bài tập Hoá học – Bồi dưỡng học sinh giỏi” . Với mong muốn đóng góp một chút công sức nhỏ bé của mình vào việc nâng cao chất lượng dạy học, trong quá trình giảng dạy. II. MỤC ĐÍCH VÀ NHIỆM VỤ 1. Mục đích Đề tài được nghiên cứu với mục đích: - Phát triển phương pháp suy nghĩ ở trình độ cao phù hợp với khả năng trí tuệ của HS. - Bồi dưỡng sự lao động, làm việc sáng tạo - Phát triển các kĩ năng, phương pháp và thái độ tự học suốt đời Trần Đăng Hưng THCS Nhật Tõn 2
  3. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - - Trên cơ sở những kiến thức cơ bản giáo viên cung cấp cho học sinh một số phương pháp giúp học sinh giải nhanh được bài tập Hoá học. Qua đó góp phần nâng cao chất lượng đội tuyển học sinh giỏi. 2. Nhiệm vụ - Nghiên cứu lí luận và thực tiễn về đổi mới phương pháp dạy học Hoá học. - Nghiên cứu cơ sở lí thuyết về các phương pháp giải bài tập hoá học - Biên soạn và sưu tầm một số bài tập áp dụng cho mỗi phương pháp. III. KHÁCH THỂ NGHIÊN CỨU VÀ ĐỐI TƯỢNG NGHIÊN CỨU 1. Khách thể nghiên cứu Giáo viên và các học sinh giỏi THCS 2. Đối tượng nghiên cứu Một số phương pháp giải bài tập Hoá học. IV. GIẢ THUYẾT KHOA HỌC Việc giảng dạy, cung cấp cho học sinh một số phương pháp giải bài tập hoá học sẽ đạt hiệu quả cao khi người GV biết làm mới kiến thức, biết sử dụng hợp lý các phương pháp giải bài toán Hoá học. V. PHƯƠNG PHÁP NGHIÊN CỨU 1. Nghiên cứu lí luận. - Nghiên cứu các vấn đề lí luận có liên quan đến đề tài. - Nghiên cứu các tài liệu về phương pháp giải bài tập hóa học. - Nghiên cứu phương pháp dạy một số cách giải bài toán hóa học. - Nghiên cứu nội dung, cấu trúc của chương trình hoá học THCS. 2. Điều tra cơ bản - Tham khảo ý kiến của giáo viên: Trao đổi với giáo viên có kinh nghiệm về dạy đội tuyển học sinh giỏi, có kinh nghiệm về cách dạy các phương pháp giải nhanh bài tập hoá học. - Thăm dò ý kiến của học sinh Trần Đăng Hưng THCS Nhật Tõn 3
  4. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - PHẦN B: NỘI DUNG CHƯƠNG I TỔNG QUAN VỀ CƠ SỞ LÝ LUẬN – CƠ SỞ THỰC TIỄN CỦA ĐỀ TÀI I. Cơ sở lí luận của đề tài: 1. Sơ lược về bồi dưỡng HSG: Các hình thức giáo dục HSG Nhiều tài liệu khẳng định: HSG có thể học bằng nhiều cách khác nhau và tốc độ nhanh hơn so với các bạn cùng lớp vì thế cần có một Chương trình HSG để phát triển và đáp ứng được tài năng của họ. Từ điển bách khoa Wikipedia trong mục Giáo dục HSG (gifted education) nêu lên các hình thức sau đây: - Lớp riêng biệt (Separate classes): HSG được rèn luyện trong một lớp hoặc một trường học riêng, thường gọi là lớp chuyên, lớp năng khiếu. Nhưng lớp hoặc trường chuyên (độc lập) này có nhiệm vụ hàng đầu là đáp ứng các đòi hỏi cho những HSG về lí thuyết (academically). Hình thức này đòi hỏi ở nhà trường rất nhiều điều kiện từ việc bảo vệ HS, giúp đỡ và đào tạo phát triển chuyên môn cho giáo viên đến việc biên soạn chương trình, bài học... - Phương pháp Mông-te-xơ-ri (Montessori method): Trong một lớp HS chia thành ba nhóm tuổi, nhà trường mang lại cho HS những cơ hội vượt lên so với các bạn cùng nhóm tuổi. Phương pháp Trần Đăng Hưng THCS Nhật Tõn 4
  5. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - này đòi hỏi phải xây dựng được các mức độ khá tự do, nó hết sức có lợi cho những HSG trong hình thức học tập với tốc độ cao. - Tăng gia tốc (Acceleration): Những HS xuất sắc xếp vào một lớp có trình độ cao với nhiều tài liệu tương ứng với khả năng của mỗi HS. Một số trường Đại học, Cao đẳng đề nghị hoàn thành chương trình nhanh hơn để HS có thể học bậc học trên sớm hơn. Nhưng hướng tiếp cận giới thiệu HSG với những tài liệu lí thuyết tương ứng với khả năng của chúng cũng dễ làm cho HS xa rời xã hội. - Học tách rời (Pull-out) một phần thời gian theo lớp HSG, phần còn lại học lớp thường. - Làm giàu tri thức (Enrichment) toàn bộ thời gian HS học theo lớp bình thường, nhưng nhận tài liệu mở rộng để thử sức, tự học ở nhà. - Dạy ở nhà (Homeschooling) một nửa thời gian học tại nhà học lớp, nhóm, học có cố vấn (mentor) hoặc một thầy một trò (tutor) và không cần dạy. - Trường mùa hè (Summer school) bao gồm nhiều course học được tổ chức vào mùa hè. - Sở thích riêng (Hobby) một số môn thể thao như cờ vua được tổ chức dành để cho HS thử trí tuệ sau giờ học ở trường. Phần lớn các nước đều chú ý bồi dưỡng HSG từ Tiểu học. Cách tổ chức dạy học cũng rất đa dạng: có nước tổ chức thành lớp, trường riêng... một số nước tổ chức dưới hình thức tự chọn hoặc course học mùa hè, một số nước do các trung tâm tư nhân hoặc các trường đại học đảm nhận... Tuy vậy, cũng có một số nước không có trường lớp chuyên cho HSG như Nhật Bản và một số bang của Hoa kỳ. Chẳng hạn: Từ 2001, với đạo luật “Không một đứa trẻ nào bị bỏ rơi” (No Child Left Behind) giáo dục HSG ở Georgia về cơ bản bị phá bỏ. Nhiều trường không còn là trường riêng, lớp riêng cho HSG, với tư tưởng các HSG cần có trong các lớp bình thường nhằm giúp các trường lấp lỗ hổng về chất lượng và nhà trường có thể đáp ứng nhu cầu giáo dục HSG thông qua các nhóm với trình độ cao. Chính vì thế vấn đề bồi dưỡng HSG đã trở thành vấn đề thời sự gây nhiều tranh luận: “Nhiều nhà GD đề nghị đưa HSG vào các lớp bình thường với nhiều HS có trình độ và khả năng khác nhau, với một phương pháp giáo dục như nhau. Tuy nhiên nhiều dấu hiệu chứng tỏ rằng giáo viên các lớp bình thường không được đào tạo và giúp đỡ tương xứng với chương trình dạy cho HSG. Nhiều nhà GD cũng cho rằng những HS dân tộc ít người và không có điều kiện kinh tế cũng không tiếp nhận được chương trình giáo Trần Đăng Hưng THCS Nhật Tõn 5
  6. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - dục dành cho HSG. Trong khi quỹ dành cho GD chung là có hạn nên sẽ ảnh hưởng nhiều tới hiệu quả đào tạo tài năng và HS giỏi”. 2. Phương pháp dạy học tích cực Với công tác bồi dưỡng học sinh giỏi thì người thầy cần tìm ra phương pháp dạy học tích cực hơn để tăng hiệu quả dạy và học. Dạy cho học sinh cách học chủ động, cách học suốt đời, cách học những điều mà thực tế đòi hỏi. Dạy tốt ngày nay không thể chỉ có thầy giảng, trò ghi, đào tạo theo nhưng gì đã lạc hậu, không còn phù hợp thực tiễn. Dạy tốt theo quan điểm mới đã đặt ra những đòi hỏi mới cho người thầy phải có những điều chỉnh phù hợp về nội dung, cách thức, phương pháp truyền thụ. 3. Nâng cao tính tích cực trong dạy và học Dạy tốt là nâng cao tính tích cực trong dạy và học (dạy – học tích cực). Khi đó công lao của thầy không tính bằng đã dạy được bao nhiêu, mà là dạy thế nào, nhưng tốt nhất là xem học sinh đã học được bao nhiêu. Phương pháp daỵ - học tích cực đặt người học ở vị trí trung tâm, còn người thầy đặt ở vị trí cao hơn và khó khăn hơn: vị trí tạo ra các điều kiện để việc học được thuận lợi. Thầy trở thành người hướng dẫn. Trong giảng dạy, dễ nhất lá nói, bởi vậy từ “người dạy” trở thành “người hướng dẫn” là điều không dễ dàng. Nó đòi hỏi công sức, trí óc, tâm huyết từ phía thầy. Không có “dạy tích cực” thì không thể có “học tích cực”. Do vậy, “không thầy đố mày làm nên” càng là một chân lý. 4. Vai trò của các phương pháp giải bài tập Hoá học: - Giúp cho HS có thể phát triển tốt khả năng tư duy, óc sáng tạo Hóa học. - Tạo cho HS có niềm say mê khoa học. - Giúp HS có thể giải nhanh các bài tập Hoá học, có ý nghĩa lớn với hình thức thi trắc nghiệm sau này khi học sinh lên cấp 3. II. Cơ sở thực tiễn: Bộ môn Hóa học ở trung học cơ sở HS chỉ mới tiếp xúc từ lớp 8, nhưng nội dung đưa đến cho học sinh tương đối nhiều. Phần lớn các kiến thức HS chỉ học ở mức độ sơ khai, những học sinh xuất sắc môn Hóa học không nhiều, những học sinh học tốt hoá cũng chỉ dừng lại ở một Trần Đăng Hưng THCS Nhật Tõn 6
  7. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - mức độ nhất định. Trong khi đó nội dung thi đành cho HS đôi khi quá sâu, quá khó nếu học sinh không được trang bị các phương pháp giải bài tập. Vì vậy, trong quá trình giảng dạy giáo viên phải cung cấp những phương pháp phù hợp để học sinh nhanh chóng nắm bắt được cách giải của mỗi loại bài tập và vận dụng linh hoạt, sáng tạo mỗi phương pháp đó. CHƯƠNG II NỘI DUNG THỰC HIỆN I. Sơ bộ về các phương pháp giúp giải nhanh bài tập hoá học: - Trước sự phát triển mạnh mẽ của khoa học, sự bùng nổ của công nghệ thông tin, sự đổi mới phương pháp dạy học nói chung, đổi mới phương pháp dạy học bộ môn hoá nói riêng, để đáp ứng được xu thế đổi mới đòi hỏi người thầy phải không ngừng đổi mới phương pháp giảng dạy, không ngừng làm mới kiến thức của mình. Đặc biệt là đối với công tác bồi dưỡng học sinh giỏi, để phát huy được tối đa khả năng của HS thì người thầy đóng vai trò là người hướng dẫn, dẫn dắt Trần Đăng Hưng THCS Nhật Tõn 7
  8. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - các em chủ động tìm ra kiến thức, khuyến khích các em tìm ra những cách giải nhanh và độc đáo trên cơ sở cung cấp, hướng dẫn cho các em một số phương pháp cơ bản. - Trong đề tài này tôi xin đưa ra một số phương pháp giúp giải nhanh bài tập hoá học phù hợp với lứa tuổi học sinh THCS như sau: + Phương pháp dựa vào những dấu hiệu đặc biệt + Phương pháp sơ đồ đường chéo. + Phương pháp tăng - giảm khối lượng. + Phương pháp áp dụng các định luật bảo toàn nguyên tố – bảo toàn khối lượng. + Phương pháp trung bình. II. Các phương pháp giúp giải nhanh bài tập hoá học: 1. Phương pháp dựa vào các dấu hiệu đặc biệt: a. Dựa vào điểm đặc biệt về nguyên tử khối (NTK) hoặc phân tử khối (PTK). Ví dụ 1: Cho các chất sau FeS; FeS2; FeO; Fe2O3; Fe3O4; FeSO3; FeSO4 ; Fe2(SO4)3. Các chất có % về khối lượng của Fe giảm dần là: A. FeO; FeS2; Fe2O3 ; FeS; Fe3O4 ; FeSO4 ; Fe2(SO4)3 B. FeS2; FeO; Fe2O3; Fe3O4 ; FeSO4 ; FeSO3 ; Fe2(SO4)3; FeS; FeSO4. C. FeO; Fe3O4; Fe2O3; FeS; FeS2; FeSO3 ; FeSO4 ; Fe2(SO4)3. D. Fe3O4; Fe2O3; FeO; FeS; FeS2 ; FeSO3 ; FeSO4 ; Fe2(SO4)3. Ta thấy các chất trong bài là những hợp chất chứa 2 hoặc 3 nguyên tử là Fe; S; O. Và NTK của S = 2 lần NTK của O, do đó có thể quy các hợp chất trên thành hợp chất chỉ chứa nguyên tố Fe và nguyên tố O. Kết quả thu được như sau: Trong FeS gồm 1Fe; 2O; FeS2 gồm 1 Fe; 4O; FeO gồm 1Fe; 1O; Fe2O3 gồm 1 Fe ; 1,5 O ; FeSO3 gồm 1Fe; 5O; FeSO4 gồm 1Fe; 6O. Sau đó so sánh tỉ lệ giữa số nguyên tử Fe với số nguyên tử O sẽ được kết quả: Đáp án C. Với cách làm nêu trên, học sinh có thể giải quyết một số bài tập tương tự: Trần Đăng Hưng THCS Nhật Tõn 8
  9. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - Ví dụ 2. Cho các chất Cu2S; CuS; CuO; Cu2O. Hai chất có % khối lượng Cu như nhau là: A. CuO và CuS C. CuS và Cu2O B. Cu2S và CuO D. Cu2S và Cu2O Với trường hợp các hợp chất cùng chứa một nguyên tố thì có thể nhận xét để làm nhanh như bài tập sau: Ví dụ 3: Oxit nào dưới đây giàu oxi nhất (hàm lượng % của oxi lớn nhất): Al2O3 ; P2O5; Fe2O3; Cl2O7; N2O3; MgO; MnO2. Lời giải: Nếu một nguyên tử oxi kết hợp với một số đơn vị khối lượng càng nhỏ của nguyên tố kia thì hàm lượng % của oxi càng lớn. Ví dụ: Trong MgO một nguyên tử oxi kết hợp với 24 đơn vị của Mg sẽ có hàm lượng % lớn hơn CaO, vì trong CaO một nguyên tử O kết hợp với 40 đơn vị của Ca. Như vậy trong câu hỏi trên bỏ qua các oxit Al2O3; Fe2O3; MgO và MnO2, chỉ cần tính một nguyên tử oxi kết hợp với mấy đơn vị nguyên tử kia: 2.14 Trong N2O3 1 nguyên tử O ứng với  9.3 đơn vị khối lượng nguyên tử N 3 2.31 P2O5 :  10 5 2.35,5 Cl2O7:  10 7 3.16 Vậy N2O3 giàu oxi nhất: %O = 100%  63,16% 2.14  3.16 Ví dụ 4: Cho m gam hỗn hợp A gồm CuO và Fe2 O3 tác dụng hết với dung dịch HCl thu được 2 muối có số mol bằng nhau. % khối lượng của CuO và Fe2O3 lần lượt là: A. 20% - 80% C. 40% - 60% B. 30% - 70% D. 50% - 50% Lời giải (Dựa vào nhận xét PTK của các hợp chất khác nhau nhưng hơn kém nhau 1 số lần . Nếu có cùng 1 khối lượng của hai chất sẽ suy ra số mol của chúng sẽ hơn kém nhau từng ấy lần) Trần Đăng Hưng THCS Nhật Tõn 9
  10. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - Nhận xét: PTK của Fe2O3 = 2.PTK của CuO CuO + 2HCl  CuCl2 + H2O (1) a mol a mol Fe2O3 + 6HCl  2FeCl3 + 3 H2O (2) b mol 2b mol Do đó theo PT(1) và (2) ta có: a = 2b. Khối lượng của CuO = 80a. Fe2O3 = 0,5a.160 = 80a Đáp án D. Qua các ví dụ trên cho thấy: rõ ràng việc học sinh vận dụng những điểm đặc biệt về nguyên tử khối hoặc phân tử khối giúp việc tìm ra đáp án rất dễ dàng, nhanh chóng và hạn chế được sai sót . b. Tìm nhanh đáp án bài tập trắc nghiệm bằng cách dựa vào NTK hoặc PTK bằng nhau của các chất. Ví dụ 1: Để hoà tan hoàn toàn a gam hỗn hợp gồm bột CaO và Fe cần vừa đủ 250ml dung dịch HCl 2M. Giá trị của a là: A. 11g B. 12g C. 13g D. 14g Fe + 2 HCl  FeCl2 + H2 (1) CaO + 2HCl  CaCl2 + H2O (2) Nhận xét: Ta thấy NTK của Fe = PTK của CaO = 56, và tỷ lệ số mol của 2 phản ứng như nhau. Nên: 1 nhh = nHCl = 0,5:2 = 0,25 (mol). 2 Do vậy mhh= 0,25.56 = 14 (g) Đáp án D. Ví dụ 2: Để hoà tan hoàn toàn 12,345g Cu(OH)2 cần vừa đủ dung dịch chứa a(g) H2SO4 giá trị của a là: A. 11,345 g B. 12,345 g C. 13,456 g D. 14,345 g Trần Đăng Hưng THCS Nhật Tõn 10
  11. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - Đáp án B. Cu(OH)2 + H2SO4  CuSO4 + 2H2O Do PTK của hai chất bằng nhau tỷ lệ số mol phản ứng là 1: 1  nCu(OH)2 = nH2SO4  mCu(OH)2 = mH2SO4 = a = 12,345 Ví dụ 3: Để tác dụng vừa hết 5,6g Fe cần vừa đủ V(ml) dung dịch HCl. Nếu cũng dùng V(ml) HCl trên để hoà tan hết CaO thì khối lượng CaO cần dùng là: A. 5,4 g B. 5,5 g C. 5.6 g D. 5,7 g. Đáp án C Hai chất có Kl mol bằng nhau, PT (1), (2)  tỷ lệ số mol như nhau  KL bằng nhau = 5,6g Ví dụ 4: Cho a gam hỗn hợp KHCO3 và CaCO3 tác dụng hết với dung dịch HCl. Khí thoát ra dần vào dung dịch Ba(OH)2 đủ được 1,97g kết tủa. Gíá trị của a là: A. 1g B. 2g C.3g D. 4g KHCO3 + HCl  KCl + H2O + CO2 (1) CaCO3 + 2HCl  CaCl2 + H2O + CO2 (2) Ba(OH)2 + CO2  BaCO3 + H2O (3) KHCO3 và CaCO3 có KL mol bằng nhau bằng 100 (1), (2), (3)  nhh = nCO2 = nBaCO3 = 1,97/197 = 0,01 a = 0,01. 100 = 1g Đáp án A 2. Phương pháp sơ đồ đường chéo: Bài toán trộn lẫn các chất với nhau là một dạng bài hay gặp trong chương trình hóa học. Ta có thể giải bài tập dạng này theo nhiều cách khác nhau, song cách giải nhanh nhất là “phương pháp sơ đồ đường chéo”. a. Quy tắc đường chéo áp dụng cho dung dịch: Có thể áp dụng quy tắc đường chéo để tính toán nhanh. Quy tắc đường chéo chỉ được áp dụng khi: - Hoặc trộn lẫn 2 dung dịch chứa cùng một chất tan duy nhất. Hai dung dịch cùng loại nồng độ và chỉ khác nhau về chỉ số nồng độ. Trần Đăng Hưng THCS Nhật Tõn 11
  12. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - - Hoặc khi pha loãng dung dịch (giữ nguyên lượng chất tan, thêm dung môi). Dung môi được coi là dung dịch có nồng độ bằng 0. - Hoặc thêm chất tan khan, nguyên chất(xem như nồng độ 100%) vào dung dịch có sẵn. - Hoặc thêm tinh thể ngậm nước vào nước, thêm tinh thể ngậm nước vào dung dịch. Nguyên tắc: Trộn lẫn 2 dung dịch: Dung dịch 1: có khối lượng m1, thể tích V1, nồng độ C1 (C% hoặc CM), khối lượng riêng d1. Dung dịch 2: có khối lượng m2, thể tích V2, nồng độ C2 (C2 > C1), khối lượng riêng d2. Dung dịch thu được có m = m1 + m2, V = V1 + V2, nồng độ C (C1 < C < C2), khối lượng riêng d. Sơ đồ đường chéo và công thức tương ứng với mỗi trường hợp là: *) Đối với nồng độ % về khối lượng: m1 C1 |C2 - C| m 1 | C 2 C | C  (1) m2 C2 |C1 - C| m 2 | C1  C | *) Đối với nồng độ mol/lít: V1 C1 |C2 - C| V1 | C 2  C | C  (2) V2 C2 |C1 - C| V2 | C1  C | *)Đối với khối lượng riêng: m 1 | C 2 C | m 1 | C 2 C | m 1 | C 2 C |  (1)  (1)  (1) m 2 | C1  C | m 2 | C1  C | m 2 | C1  C | Khi sử dụng sơ đồ đường chéo ta cần chú ý: *) Chất rắn coi như dung dịch có C = 100% *) Dung môi coi như dung dịch có C = 0% *) Khối lượng riêng của H2O là d = 1 g/ml b. Quy tắc đường chéo áp dụng cho hỗn hợp khí:  Hỗn hợp khí cũng được xem như là một dung dịch-dung dịch khí. Nếu biết M của 2 khí cụ thể, có thể tìm tỉ lệ mol hoặc tỉ lệ thể tích giữa chúng bằng quy tắc đường chéo mở rộng sau đây: Khí 1 n1, V1 M1 M2 - M M Khí 2 n2, V2 M2 M1 - M Trần Đăng Hưng THCS Nhật Tõn 12
  13. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI -  n1 V1 M 2  M   (Chọn M2> M1) n 2 V2 M  M1 Sau đây là một số ví dụ sử dụng phương pháp đường chéo trong tính toán pha chế dung dịch Dạng 1: Tính toán pha chế dung dịch Ví dụ 1: Để thu được dung dịch HCl 25% cần lấy m1 gam dung dịch HCl 45% pha với m2 gam dung dịch HCl 15%. Tính tỉ lệ m1/m2 ? Hướng dẫn giải: m1 | 15  25 | 10 1 Áp dụng công thức (1):    m 2 |45  25| 20 2 Ví dụ 2: Để pha được 500 ml dung dịch nước muối sinh lí (C = 0,9%) cần lấy V ml dung dịch NaCl 3%. Tính giá trị của V? Hướng dẫn giải: Ta có sơ đồ: V1(NaCl) 3 |0 - 0,9| 0,9 V2(H2O) 0 |3 - 0,9| 0,9  V1   500  150 (ml) 2,1  0,9 Phương pháp này không những hữu ích trong việc pha chế các dung dịch mà còn có thể áp dụng cho các trường hợp đặc biệt hơn, như pha một chất rắn vào dung dịch. Khi đó phải chuyển nồng độ của chất rắn nguyên chất thành nồng độ tương ứng với lượng chất tan trong dung dịch. Ví dụ 3: : Hòa tan 200 gam SO3 vào m gam dung dịch H2SO4 49% ta được dung dịch H2SO4 78,4%. Tính giá trị của m? Hướng dẫn giải: Phương trình phản ứng: SO3 + H2O H2SO4 98  100 100 gam SO3  122,5 gam H2SO4 80 Nồng độ dung dịch H2SO4 tương ứng: 122,5% Gọi m1, m2 lần lượt là khối lượng SO3 và dung dịch H2SO4 49% cần lấy. Theo (1) ta có: m1 | 49  78,4 | 29,4   m 2 | 122,5  78,4 | 44,1 Trần Đăng Hưng THCS Nhật Tõn 13
  14. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - 44,1  m2   200  300 (gam) 29,4 Ví dụ 4: Cần lấy bao nhiêu gam tinh thể CuSO4.5H2O và bao nhiêu gam dung dịch CuSO4 8% để pha thành 280 gam dung dịch CuSO4 16%? A. 180 gam và 100gam B. 200gam và 80 gam C. 60 gam và 220 gam D. 40 gam và 240 gam Hướng dẫn giải: Coi CuSO4.5H2O là dung dịch CuSO4 có nồng độ: 160 C%  .100%  64% 250 m1 8 40 áp dụng công thức (1) ta có:   => Đáp án D m 2 48 240 Điểm lí thú của sơ đồ đường chéo là ở chỗ phương pháp này còn có thể dùng để tính nhanh kết quả của nhiều dạng bài tập hóa học khác. Sau đây ta lần lượt xét các dạng bài tập này. Dạng 2: Tính tỉ lệ thể tích hỗn hợp 2 khí Ví dụ 1: Một hỗn hợp gồm O2, O3 ở điều kiện tiêu chuẩn có tỉ khối đối với hiđro là 18. Thành phần % về thể tích của O3 trong hỗn hợp là bao nhiêu? Hướng dẫn giải: áp dụng sơ đồ đường chéo: V M1= 48 O |32 - 36| 3 M = 18.2 =36 VO M2= 32 |48 - 36| 2 VO3 4 1 1     %VO3   100%  25% VO2 12 3 31 Ví dụ 2: Cần trộn 2 thể tích metan với một thể tích đồng đẳng X của metan để thu được hỗn hợp khí có tỉ khối hơi so với hiđro bằng 15. X là: A. C3H8 B. C4H10 C. C5H12 D. C6H14 Hướng dẫn giải: Ta có sơ đồ đường chéo: Trần Đăng Hưng THCS Nhật Tõn 14
  15. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - V M1= 16 CH 4 |M2 - 30| M = 15.2 =30 VM M2 = M2 2 |16 - 30| VCH 4 | M 2 - 30 | 2     | M 2 - 30 |  28 VM 2 14 1  M2 = 58  14n + 2 = 58  n = 4 X là: C4H10  Đáp án B. Dạng 3: Bài toán hỗn hợp 2 chất vô cơ của 2 kim loại có cùng tính chất hóa học Ví dụ 1: Hòa tan 3,164 gam hỗn hợp 2 muối CaCO3 và BaCO3 bằng dung dịch HCl dư, thu được 448 ml khí CO2 (đktc). Thành phần % số mol của BaCO3 trong hỗn hợp là bao nhiêu? Hướng dẫn giải: 0,448 3,164 n CO2   0,02 (mol)  M   158,2 22,4 0,02 áp dụng sơ đồ đường chéo: BaCO3(M1= 197) |100 - 158,2| = 58,2 M=158,2 CaCO3(M2 = 100) |197 - 158,2| = 38,8 58,2  %n BaCO 3  100%  60% 58,2  38,8 áp dụng: Dạng 4: Bài toán trộn 2 quặng của cùng một kim loại Đây là một dạng bài mà nếu giải theo cách thông thường là khá dài dòng, phức tạp. Tuy nhiên nếu sử dụng sơ đồ đường chéo thì việc tìm ra kết quả trở nên đơn giản và nhanh chóng hơn nhiều. Để có thể áp dụng được sơ đồ đường chéo, ta coi các quặng như một “dung dịch” mà “chất tan” là kim loại đang xét, và “nồng độ” của “chất tan” chính là hàm lượng % về khối lượng của kim loại trong quặng. Ví dụ : A là quặng hematit chứa 60% Fe2O3. B là quặng manhetit chứa 69,6% Fe3O4. Trộn m1 tấn quặng A với m2 tấn quặng B thu được quặng C, mà từ 1 tấn quặng C có thể điều chế được 0,5 tấn gang chứa 4% cacbon. Tính tỉ lệ m1/m2 ? Trần Đăng Hưng THCS Nhật Tõn 15
  16. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - Hướng dẫn giải: Số kg Fe có trong 1 tấn của mỗi quặng là: 60 112 +) Quặng A chứa:  1000   420 (kg) 100 160 69,6 168 +) Quặng B chứa:  1000   504 (kg) 100 232  4  +) Quặng C chứa: 500  1    480 (kg)  100  Sơ đồ đường chéo: mA 420 |504 - 480| = 24 480 mB 504 |420 - 480| = 60 m A 24 2    m B 60 5 Cách 2: + 1 tấn A có 0,6 tấn Fe2O3 có 0,42 tấn Fe  trong A có 42% Fe + 1 tấn B có 69,6 tấn Fe3O4 có 0,504 tấn Fe  trong B có 50,4% Fe) + trong C có 0.48. 100 = 48% Fe Sau đó áp dụng sơ đồ đường chéo giống C% của dung dịch BÀI TẬP ÁP DỤNG Câu 1: Khối lượng của CuSO4.5H2O cần thêm vào 300gam dung dịch CuSO4 10% để thu được dung dịch CuSO4 25% là bao nhiêu? Đáp án: 115,4gam Câu 2: Cần bao nhiêu gam CuSO4.5H2O vào 450gam dung dịch CuSO4 4% để được dung dịch CuSO4 10%? Đáp án: 50 gam Câu 3: Cần lấy bao nhiêu gam oleum 71% để khi cho vào 800 gam dung dịch H2SO4 20% thì thu được dung dịch H2SO4 90%? Đáp án: 2153,8 gam Câu 4: Tính lượng tinh thể axetat đồng (CH3COO)2Cu.H2O và dung dịch axetat đồng 5 để điều chế 430 gam dung dịch axetat đồng 20%? Đáp án: 355 gam và 75 gam. Trần Đăng Hưng THCS Nhật Tõn 16
  17. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - Câu 5: Muốn có dung dịch FeSO4 có nồng độ 3,8% thì khối lượng FeSO4.7H2O là bao nhiêu khi hoà tan vào 372,2 gam nước? Đáp án: 27,8 gam Câu 6: Cho tinh thể CuSO4.5H2O hoà tan vào 400 gam dung dịch CuSO4 2% để thu được dung dịch CuSO4 có nồng độ 1M ( D = 1,1g/ml ). Tính khối lượng tinh thể cần dùng? Đáp án: 101,47 gam Câu 7: Độ tan của AgNO3 ở 800C là 668 gam và ở 200C là 222 gam. Khối lượng AgNO3 kết tinh khỏi dung dịch khi làm lạnh 400 gam dung dịch bão hoà ở 800C xuống 200C là bao nhiêu gam ? Đáp án: 261,3 gam 0 0 Câu 8: Biết độ tan của NaCl ở 90 C và 20 C lần lượt là 50 gam và 36 gam. Khối lượng tinh thể NaCl tách ra khi làm lạnh 450 gam dung dịch bão hoà ở 900C xuống đến 200C là bao nhiêu? Đáp án: 42 gam Câu 9: Hoà tan 55 gam hỗn hợp Na2CO3, Na2SO3 bằng 500ml axit H2SO4 1M thì vừa đủ thu được 1 muối trung hoà duy nhất và hỗn hợp khí X. Thành phần % thể tích hỗn hợp khí X là: A. 80% CO2, 20%SO2 B. 70% CO2, 30%SO2 C. 60% CO2, 40% SO2 D. 50% CO2, 50% SO2. Đáp án: A Câu 10: X là khoáng vật cuprit chứa 45% Cu2O. Y là khoáng vật tenorit chứa 70% CuO. Cần mX trộn X và Y theo tỉ lệ khối lượng t  để được quặng C, mà từ 1 tấn quặng C có thể điều chế mY được tối đa 0,5 tấn đồng nguyên chất. Giá trị của t là: A. 5/3 B. 5/4 C. 4/5 D. 3/5 Đáp án: D Câu 11: X là quặng hematit chứa 60% Fe2O3. Y là quặng manhetit chứa 69,6% Fe3O4. Trộn a tấn quặng X với b tấn quặng Y thu được quặng Z, mà từ 1 tấn quặng Z có thể điều chế được 0,5 tấn gang chứa 4% cacbon. Tỉ lệ a/b là: A. 5/2 B. 4/3 C. 3/4 D. 2/5 Đáp án: D Câu 12: Hoà tan hoàn toàn 34,85 gam hỗn hợp 2 muối BaCO3, Na2SO3 bằng dung dịch HCl thu được 4,48 lít khí CO2 ( đktc ). Số mol BaCO3 trong hỗn hợp là: A. 0,20 B. 0,15 C. 0,10 D. 0,05 Trần Đăng Hưng THCS Nhật Tõn 17
  18. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - Đáp án: B Câu 13: Nhiệt phân hoàn toàn 108 gam hỗn hợp X gồm Na2CO3, NaHCO3 được chất rắn Y có khối lượng bằng 75,4% khối lượng của X. Khối lượng NaHCO3 có trong X là: A. 54,0 gam B. 27,0gam C. 72,0 gam D. 36,0 gam Đáp án: C Câu 14: Đốt cháy hoàn toàn 21,0 gam dây sắt trong không khí thu được 29,4 gam hỗn hợp các oxit Fe2O3, Fe3O4. Khối lượng Fe2O3 tạo thành là: A. 12,0 gam B. 13,5 gam C. 16.5 gam D. 18.0 gam Đáp án: A Trên đây là một số tổng kết về việc sử dụng phương pháp sơ đồ đường chéo trong giải nhanh bài toán hóa học. Các dạng bài tập này rất đa dạng, vì vậy đòi hỏi chúng ta phải nắm vững phương pháp song cũng cần phải có sự vận dụng một cách linh hoạt đối với từng trường hợp cụ thể. Để làm được điều này cần phải có sự suy nghĩ, tìm tòi để có thể hình thành và hoàn thiện kĩ năng giải toán của mình. 3. Phương pháp áp dụng định luật bảo toàn nguyên tố - bảo toàn khối lượng – Bảo toàn e a. Áp dụng định luật bảo toàn nguyên tố: Nguyên tắc chung của phương pháp này là dựa vào định luật bảo toàn nguyên tố (BTNT): “Trong các phản ứng hóa học thông thường, các nguyên tố luôn được bảo toàn”. Điều này có nghĩa là: “ Tổng số mol nguyên tử của một nguyên tố X bất kì trước và sau phản ứng là luôn bằng nhau”. Ví dụ 1: Hỗn hợp chất rắn A gồm 0,1 mol Fe2O3 và 0,1 mol Fe3O4. Hòa tan hoàn toàn A bằng dung dịch HCl dư, thu được dung dịch B. Cho NaOH dư vào B, thu được kết tủa C. Lọc lấy kết tủa, rửa sạch rồi đem nung trong không khí đến khối lượng không đổi thu được m gam chất rắn D. Tính m. Hướng dẫn giải Các phản ứng hóa học xảy ra: Fe 2O3 + 6HCl 2FeCl3 + 3H2O Fe 3O4 + 8HCl FeCl2 + 2FeCl3 + 4H2O NaOH + HCl NaCl + H2O Trần Đăng Hưng THCS Nhật Tõn 18
  19. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - 2NaOH + FeCl2 NaCl + Fe(OH)2 3NaOH + FeCl3 3NaCl + Fe(OH)3 4Fe(OH)2 + 2H2O + O2 4Fe(OH)3 2Fe(OH)3 Fe2O3 + 3H2O Theo các phương trình phản ứng ta có sơ đồ: Fe 2 O 3 : 0,1 mol (rắn D) Fe 3O4: 0,1 mol Áp dụng định luật bảo toàn nguyên tố đối với Fe: n Fe (trongD) = 0,1.2 + 0,1.3 =0,5 (mol) 0,5 Có: nD =  0,25 (mol) 2 Nên : mD= 0,25.160 = 40 (gam). Ví dụ 2: (6)Đốt cháy 9,8g bột Fe trong không khí thu được hỗn hợp rắn X gồm FeO, Fe3O4 và Fe2O3. Để hoà tan X cần dùng vừa hết 500ml dung dịch HNO3 1,6M, thu được V lít khí NO ( sản phẩm khử duy nhất, đo ở đktc).Giá trị của V là: A. 6,16lít B. 10,08 lít C. 11,76lít D. 14,0 lít Lời giải: Sơ đồ phản ứng: Fe + O2  X + HNO3  Fe(NO3)3 + NO Theo bảo toàn nguyên tố với Fe: Số mol Fe(NO3)3 = Số mol Fe = 0,175(mol) Theo bảo toàn nguyên tố với N: Số mol NO = Số molHNO3 - 3 Số mol Fe(NO3)3 0,175(mol = 0,5.1,6 – 3.0,175 = 0,275(mol) V = 0,275. 22,4 = 6,16 (lít) Vậy đáp án A Ví dụ 3: Khử hoàn toàn 17,6g hỗn hợp Fe; FeO; Fe2O3 cần vừa đủ 4,48l CO (ở đktc). Khối lượng Fe thu được là: A. 14,5 g B. 15,5 g C. 16,5 g D. 14,4 g Trần Đăng Hưng THCS Nhật Tõn 19
  20. Một số phương pháp giải nhanh bài tập hóa học- ÁP DỤNG CHO BỒI DƯỠNG HỌC SINH GIỎI - Lời giải : O PTHH: FeO + CO t  Fe + CO2  O Fe2O3 + 3CO t  2 Fe + 3CO2  Tổng số mol CO cần dùng: 4,48 : 22,4 = 0,2 (mol) Nhận xét: Theo PT nhận thấy: nCO = nO của oxit Fe = 0,2 (mol) Nên mFe = m hỗn hợp – mO trong oxit Fe = 17,6 – 16.0,2 = 14,4 (g) BÀI TẬP ÁP DỤNG Bài tập 1 : Hỗn hợp chất rắn A gồm 0,1 mol Fe2O3 và 0,1 mol Fe3O4. Hoà tan hoàn toàn A bằng dung dịch HCl dư thu được dung dịch B. Cho NaOH dư vào B, thu được kết tủa C. Lọc lấy kết tủa, đem nung trong không khí đến khối lượng không đổi thu được m g chất rắn D. Giá trị của m là: A. 30 g B. 10 g C. 40 g D. 20 g Đáp án C. Bài tập 2: (1)Khử 20,6 g hỗn hợp A gồm Fe, FeO, Fe2O3 bằng 2,24 lít khí CO ở nhiệt độ cao (đktc) .Thu được m g sắt . Giá trị của m là: A. 18 g B. 19 g C. 19,5 g D. 20 g Đáp án B. Bài tập 3: Khử hỗn hợp A gồm FeO, Fe3O4 và Fe2 O3 bằng khí m lít CO ở nhiệt độ cao thu được 40 g hỗn hợp chất rắn X và 6,72 lít khí CO2 (đktc). Giá trị của m là: A. 5,6 B. 2,24 C. 10,08 D. 6,72 Đáp án D. b. Áp dụng định luật bảo toàn khối lượng: Định luật bảo toàn khối lượng (ĐLBTKL): “Tổng khối lượng các chất tham gia phản ứng bằng tổng khối lượng các sản phẩm”. “Khi cô cạn dung dịch thì khối lượng hỗn hợp muối thu được bằng tổng khối lượng các nguyên tố kim loại và gốc axit.” giúp ta giải bài toán hóa học một cách đơn giản, nhanh chóng. Trần Đăng Hưng THCS Nhật Tõn 20
Theo dõi chúng tôi
Đồng bộ tài khoản