SƠ ĐỒ TÍNH TOÁN CẦU THANG

Chia sẻ: Le Duc Toan | Ngày: | Loại File: DOC | Số trang:0

0
827
lượt xem
245
download

SƠ ĐỒ TÍNH TOÁN CẦU THANG

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ
Lưu

Nội dung Text: SƠ ĐỒ TÍNH TOÁN CẦU THANG

  1. KCBT COÁT THEÙP 3                           BIEÂN   SOAÏN:KSXD PHAÏM XUAÂN THANH SÔ ÑOÀ TÍNH TOAÙN CAÀU THANG BAØI 1:CAÀU THANG DAÏNG BAÛN NHÖ HÌNH DAÀ KIEÀ G M N DCN CÑ 1 VEÁ 1 a1 CÑ 2 d VEÁ 3 COÄ T CÑ 3 VEÁ 2 a1 l a2 A)Sô ñoà tính VEÁ 1: A/a2 q'1 DCN q2 L VEÁ 1 DK l a2 Tính L: L = ( 2 +( ×hbaäc)2 l N I)Tính q2:  q2=p2+g2 1)tính p2: p1hoaït taûi taùc duïng leân phaàn baûn nghieân l l p2 =n ×pc ×a1 × ( vôùi =cosα ) L L 2)tính g2: g2:tænh taûi taùc duïng leân phaàn baûn nghieân g2=gbaûn+gvöõa traùt+gbaäc a)gbaûn=n.δbaûn.γbaûn.a1 b)gvöõa traùt=n. δvöõa traùt.γvöõa traùt.a1 G c) gbaäc=N L G: troïng löôïng baûn thaân 1 baäc G= n.(bbaäc.hbaäc).0,5. γTB.a1 => g2=gbaûn+gvöõa traùt+gbaäc 1
  2. KCBT COÁT THEÙP 3                           BIEÂN   SOAÏN:KSXD PHAÏM XUAÂN THANH Vaäy q2 = p2 + g2 II)TÍNH q’1: q’1=p’1+g’1 1)tính p’1: p’1=n.pc.a1 2)tính g’1: g’1=a1(n.δbaûn.γbaûn+ n.δvöõa(loùt+traùt).γvöõa(loùt+traùt)+ n.δñaù maøi.γñaù maøi) vaäy q’1=p’1+g’1 B) Sô ñoà tính baûn  phaàn A:(phaàn chieáu nghæ) I)  TÍNH qa:  qa=q'1*(a2/a1) phaà A n A A a1/2 d a1/2 a      Ta coù: qa =q' × 2 1 a1 qa ×d Tính phaûn löïc taïi A: Σñöùng =0 : 2A=qaxd => A = 2 C)Sô ñoà tính toaùn veá 1 do phaàn A truyeàn vaøo: Vaäy sô ñoà tính toaùn baûn cho veá 1 laø: q1=q'1+(A/a2) q2 DC N 1 C L VEÁ 1 1 DK l a2 B ΣM/C =0 .Ta coù: l a B ( +a2 )=q2 ×L ×( +a2 )+q1 ×a2 × 2 L 2 2 l a q2 ×L ×( +a2 )+q1 ×a2 × 2 ⇒B = 2 2( daN ) ( +a2 ) L 2
  3. KCBT COÁT THEÙP 3                           BIEÂN   SOAÏN:KSXD PHAÏM XUAÂN THANH Suy ra C=…..(daN) Duøng maët caét 1-1 taù coù: q2 Mx X Qx DK x B x x ΣM/O = 0: B ×x =q2 ×X × +M x ⇒ M x =B ×x ­  2 ×X ×   1)  q  ( 2 2 x l x ×L Laäp tæ leä: = ⇒ X = X L l x2 Thay vaøo (1) ta coù: M x =B ×x ­  2 ×L ×   3)  q  ( 2l Duøng phöông phaùp ñaïo haøm ta coù: d( x ) M x B ×l =0 :( )= B ­q2 ×L × =0 = x = 3 > > d(x) l q2 ×L B 2 ×l Thay giaù trò x vöøa tìm ñöôïc vaøo (3) ta suy ra : M m ax = 2 ×q2 ×L Bieåu ñoà moment ñöôïc veõ nhö sau: DC N M m a x Suy ra: Tính vaø boá trí theùp cho baûn: VD tính ra As = ….(cm2) As Neáu kyù hieäu theùp daïng Ø…a… thì ta phaûi ñoåi ra: As* = a1 as ×b Suy ra A* => choïn theùp saøn vôùi  u= As * ( =100)  b   as:dieän tích 1 thanh theùp saøn C)TÍNH DAÀM CHIEÁU NGHÆ: 3
  4. KCBT COÁT THEÙP 3                           BIEÂN   SOAÏN:KSXD PHAÏM XUAÂN THANH C /a1 go+gt(neá c où u ) C oä 1 t C oä 2 t a1 d a1 BAØI 2:CAÀU THANG DAÏNG BAÛN NHÖ HÌNH DAÀ KIEÀ G M N DC N a1 CÑ 1 VEÁ 1 CÑ 2 VEÁ 3 d C OÄ T VEÁ 2 a1 CÑ 4 CÑ 3 l a2 XEM VEÁ 3 TÖÏA VAØO VEÁ 1 VAØ VEÁ 2 A)Sô ñoà tính VEÁ 1: A/ a2 q'1 CÑ 2 DC N q2 C CÑ 1 L VEÁ 1 DK l a2 B I)Tính q2:tính toaùn q2 töông töï nhö treân II)Tính q’1 töông töï nhö treân B)Sô ñoà tính baûn phaàn A:(phaàn chieáu nghæ) 4
  5. KCBT COÁT THEÙP 3                           BIEÂN   SOAÏN:KSXD PHAÏM XUAÂN THANH q'2 Nxh(baä ) N:soábaäc c L' phaà A n A A a1/2 d a1/2 Tính L’: L' d 2 +( ×hbaäc)2 = N I)Tính q’2: q’2=g’2+p’2 1)tính q’2:hoaït taûi taùc duïng leân baûn nghieân phaàn A d q’2=n.pc.a1. L' 2)tính g’2:tænh taûi taùc duïng leân phaàn baûn nghieân phaàn A g’2=gbaûn+gvöõa traùt+gbaäc a)gbaûn=n.δbaûn.γbaûn.a1 b)gvöõa traùt=n. δvöõa traùt.γvöõa traùt.a1 G c) gbaäc=N L G: troïng löôïng baûn thaân 1 baäc G= n.(bbaäc.hbaäc).0,5. γTB.a1 => g’2=gbaûn+gvöõa traùt+gbaäc Vaäy q’2 = p’2 + g’2 Tính phaûn löïc taïi goái töïa: q' × 2 d Σñöùng =0 : 2A= q’2xd => A = 2 C)Vaäy sô ñoà tính toaùn baûn cho veá 1 laø: q1=q'1+(A/a2) q2 DC N 1 C L VEÁ 1 1 DK l a2 B Tính phaûn löïc ôû goái töïa: Σñöùng = 0 : B+C = q2xL+q1xa2 5
  6. KCBT COÁT THEÙP 3                           BIEÂN   SOAÏN:KSXD PHAÏM XUAÂN THANH ΣM/C=0: l q2 ×L ×( +a2 )+q1 ×a2 l 2 B ( +a2 )=q2 ×L ×( +a2 )+q1 ×a2 = B = l > 2 ( +a2 ) l l ( 2 ×L ×( +a2 )+q1 ×a2 ) q Thay B vaøo ta suy ra ñöôïc : C =(q2xL +q1xa2)­ 2 ( +a2 ) l TÍNH THEÙP CHO VEÁ 1 VAØ VEÁ 2 TÖÔNG TÖÏ NHÖ TREÂN. D) TÍNH DAÀM CHIEÁU NGHÆ: C /a1 go C OÄ 2 T C OÄ 1 T a1 d a1 DAÀ GAÕ KHUÙ M Y C Tính vaø boá trí theùp cho daàm chieáu nghæ BAØI 3:CAÀU THANG DAÏNG BAÛN NHÖ HÌNH DAÀ KIEÀ G M N DC N 2 DC N 1 1 D1 CÑ 1 VEÁ 1 a1 D2 CÑ 2 1 2 VEÁ 3 2 d D3 C OÄ T CÑ 3 VEÁ 2 a1 D4 l a2 Phaân tích sô ñoà tính toaùn: L A) BAÛN VEÁ 1 VAØ VEÁ 2: giaû söû:L>2a1( >2 )=>baûn laø vieäc a1 moät phöông Caét theo phöông caïnh ngaén 1 m ñeå tính: Maët caét 1­1: 6
  7. KCBT COÁT THEÙP 3                           BIEÂN   SOAÏN:KSXD PHAÏM XUAÂN THANH q3 D1 a1 D2 Z Z q2 Giaù trò q3 ñöôïc tính nhö sau: q3 = (q :taûi taùc duïng nhö baøi  a1 2 toaùn 1) Tính phaûn löïc goái töïa: q3 ×a1 Σñöùng = 0 :2Z=q3xa1 => Z = 2 B)DAÀM LIMON D2 VAØ D3: Z/ 1(m) Z/1(m) go+gt(neá c où u ) go+gt(neá c où u ) DC N1 DC N1 X X L VEÁ 1 L VEÁ 1 DK DK l l X DAÀ D2 M X DAÀ D3 M Tính phaûn löïc goái töïa: ( o +gt +Z )×L g Σñöùng = 0 :2X=(go+gt+Z)xL => X= 2 C)TÍNH BAÛN CHIEÁU NGHÆ: Giaû söû coù DCN2. Giaû söû (2a1+d)>2a2 =>baûn laøm vieäc 1 phöông Caét theo phöông caïnh ngaén 1 m ñeå tính q3 D1 a1 D2 Z Z q' 1 Tính q4: q4 ñöôïc tính nhö sau: q4= a1 Tính phaûn löïc goái töïa: q4 ×q2 Σñöùng = 0 :2Y=q4xa2 =>Y= 2 D)tính DCN 1: 7
  8. KCBT COÁT THEÙP 3                           BIEÂN   SOAÏN:KSXD PHAÏM XUAÂN THANH q3 D1 a1 D2 Z Z Tính phaûn löïc goái töïa: Σñöùng = 0 :2 V=(go+Y)(2a1+d)+X.a1+X(a1+d) ( +Y) 2a1 +d)+X. 1 +X( 1 +d) go ( a a = V= > 2 E) DAÀM LIMON D1 VAØ D4: q3 D1 a1 D2 Z Z F)tính DCN 2: Y / 1(m) a1 d a1 go+gt(neá c où u ) BAØI 4:CAÀU THANG DAÏNG BAÛN NHÖ HÌNH q3 D1 a1 D2 Z Z A)TÍNH BAÛN VEÁ 1 VAØ VEÁ 2: 8
  9. KCBT COÁT THEÙP 3                           BIEÂN   SOAÏN:KSXD PHAÏM XUAÂN THANH q3 D1 a1 D2 Z Z q2: tính töông töï nhö ví duï 1 B) 9

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản