Số phức, đại số tổ hợp

Chia sẻ: Hà Hoàng Lâm | Ngày: | Loại File: DOC | Số trang:5

0
242
lượt xem
137
download

Số phức, đại số tổ hợp

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'số phức, đại số tổ hợp', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Số phức, đại số tổ hợp

  1. Chuyên đề SỐ PHỨC−ĐẠI SỐ TỔ HỢP I. SỐ PHỨC A. LÝ THUYẾT I. Dạng đại số (vẫn còn nhớ) II. Dạng lượng giác của số phức z = r ( cos ϕ + i sin ϕ ) (r > 0) là dạng lương giác của z = a + bi (a, b ∈ R, z ≠ 0) * r = a 2 + b 2 là môđun của z.  a cos ϕ = r  * ϕ là một acgumen của z thỏa  sin ϕ = b   r 1. Nhân chia số phức dưới dạng lượng giác. Nếu z = r ( cos ϕ + i sin ϕ ) , z ' = r ' ( cos ϕ '+ i sin ϕ ') thì: z r * z.z ' = r.r '  cos ( ϕ + ϕ ') + i sin ( ϕ + ϕ ')    * = cos ( ϕ − ϕ ') + i sin ( ϕ − ϕ ')  z' r'   n 2. Công thức Moivre: n ∈ N * thì  r ( cos ϕ + i sin ϕ )  = r n ( cos nϕ + i sin nϕ )   3. Căn bậc hai của số phức dưới dạng lượng giác  ϕ ϕ  ϕ ϕ Căn bậc hai của số phức z = r ( cos ϕ + i sin ϕ ) (r > 0) là r  cos + i sin  và − r  cos + i sin   2 2  2 2 B. BÀI TẬP 1. (ĐH_Khối A 2009) 2 2 Gọi z1, z2 là hai nghiệm của phương trình z2+2z+10=0. Tính giá trị biểu thức A = z1 + z 2 . ĐS: A=20 2 2. Cho z1, z2 là các nghiệm phức của phương trình 2 z − 4 z + 11 = 0 . Tính giá trị của biểu thức 2 2 z1 + z2 A= . ( z1 + z2 ) 2 ĐS: A=11/4 3. (CĐ_Khối A 2009) a. Số phức z thỏa mãn (1+i)2(2− i)z=8+i+(1+2i)z. Tìm phần thực, phần ảo của z. 4 z − 3 − 7i b. Giải phương trình sau trên tập số phức: = z − 2i . z −i ĐS: a. a=2, b=− 3 b. z=1+2i, z=3+i 4. Tìm số phức z thoả mãn: z − 2 + i = 2 . Biết phần ảo nhỏ hơn phần thực 3 đơn vị. ( ) ( ĐS: z = 2 − 2 − 1 + 2 i, z = 2 + 2 − 1 − 2 i . ) 5. (ĐH_Khối B 2009) Tìm số phức z thỏa mãn z − ( 2 + i ) = 10 và z.z = 25 . ĐS: z=3+4i hoặc z=5  z −1  z −i =1 ( 1)  6. Tìm số phức z thỏa mãn:  .  z − 3i = 1 ( 2)  z+i  HD: Gọi z=x+yi; (1)⇒x=y, (2)⇒y=1. ĐS: z=1+i. Chuyên đề: ĐẠI SỐ TỔ HỢP_SỐ PHỨC 1
  2. 4 z+i 7. Giải phương trình:    = 1.  z −i ĐS: z∈{0;1;−1} 2 8. Giải phương trình: z + z = 0 . HD: Gọi z=x+yi thay vào phương trình ⇒ x, y ⇒ z. ĐS: z∈{0;i;−i} 2 9. Giải phương trình: z + z = 0 . HD: Gọi z=x+yi thay vào phương trình ⇒ x, y ⇒ z. 1 3 ĐS: z=0, z=− z = 1, ± i 2 2 z2 10. Giải phương trình: z 4 − z 3 + + z + 1 = 0. 2 HD: Chia hai vế phương trình cho z2. 1 1 ĐS: z=1±i, z = − ± i . 2 2 11. Giải phương trình: z5 + z4 + z3 + z2 + z + 1 =0. HD: Đặt thừa số chung 1 3 1 3 ĐS: z = −1, z = ± i, z = − ± i. 2 2 2 2 12. Cho phương trình: (z + i)(z2−2mz+m2− 2m)=0. Hãy xác định điều kiện của tham số m sao cho phương trình: a. Chỉ có đúng 1 nghiệm phức. b. Chỉ có đúng 1 nghiệm thực. c. Có ba nghiệm phức. 13. Tìm đa thức bậc hai hệ số thực nhận α làm nghiệm biết: a. α = 2− 5i b. α = − i 3 2− c. α = 3 - i 2 14. Giải phương trình sau biết chúng có một nghiệm thuần ảo: a. z3− 2− 2 = 0. iz 2iz− b. z3+(i− 2+(4− 3)z 4i)z−7+4i = 0. 15. (ĐH_Khối D 2009) Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm biểu diễn số phức z thõa mãn điều kiện z − ( 3 − 4i ) = 2 . ĐS: (x− 2+(y+4)2=4 3) 16. Xác định tập hợp các điểm trên mặt phẳng biểu diễn số phức: 2 z − i = z − z + 2i . x2 ĐS: y = . 4 3 17. Trong các số phức thỏa mãn z − 2 + 3i = . Tìm số phức z có môđun nhỏ nhất. 2 3 2 2 9 HD: *Gọi z=x+yi. z − 2 + 3i = ⇒ … ⇒( x − 2 ) + ( y + 3) = . 2 4 * Vẽ hình ⇒|z|min ⇒z. 26 − 3 13 78 − 9 13 ĐS: z = + i. 13 26 18. Tìm phần thực, phần ảo của các số phức sau: (1 + i)10 π π5  ( ) 7 b.  cos − i sin  i 1 + i 3 . a. ( ) 9 . 3 +i  3 3 HD: Sử dụng công thức Moivre. Chuyên đề: ĐẠI SỐ TỔ HỢP_SỐ PHỨC 2
  3. 1 ĐS: a. Phần thực − , phần ảo bằng 0, b. Phần thực 0, phần ảo bằng 128. 16 19. Tìm phần thực và phần ảo của số phức sau: 1+(1+i)+(1+i)2+(1+i)3+ … + (1+i)20. HD: Áp dụng công thức tính tổng của CSN. ĐS: phần thực − 10, phần ảo: 210+1. 2 II. ĐẠI SỐ TỔ HỢP A. LÝ THUYẾT 1. Giai thừa: n!= n.(n−1)!=n.(n−1).(n− … .3.2.1, 2). n≥0. n! 2. Số chỉnh hợp chập k của n phần tử: An = k ( n − k )! , n≥k>0. n! 3. Số tổ hợp chập k của n phần tử: C n = k , n≥k≥0. k!( n − k )! 4. Quy ước n!=0!=1. 5. Nhị thức Newton ( a + b ) = C n a n + C n a n −1b + C n2 a n −2 b 2 +  + C nn − 2 a 2 b n − 2 + C n −1 ab n −1 + C nn b n . n 0 1 n k n−k k Công thức số hạng tổng quát: Tk +1 = C n a b , 0≤k≤n. B. BÀI TẬP 1. (CĐ_Khối D 2008) 18  1  Tìm số hạng không chứa x rtrong khai triển nhị thức Newton của  2 x + 5  , (x>0).    x ĐS: 6528 2. (ĐH_Khối D 2004) 7  1  Tìm số hạng không chứa x rtrong khai triển nhị thức Newton của  3 x +   với x>0.  4  x ĐS: 35 3. (ĐH_Khối A 2003) n  1  Tìm số hạng chứa x8 trong khai triển nhị thức Newton của  3 + x 5  , biết rằng x  C n + 4 − C n +3 = 7( n + 3) , (n nguyên dương, x>0, ( C n là số tổ hợp chập k của n phần tử). n +1 n k ĐS: 495 4. (ĐH_Khối D 2005) An4+1 + 3 An3 Tính giá trị biểu thức M = , biết rằng C n +1 + 2C n + 2 + 2C n +3 + C n + 4 = 149 (n là số nguyên 2 2 2 2 ( n + 1)! k k dương, An là số chỉnh hợp chập k của n phần tử và C n là số tổ hợp chập k của n phần tử) 3 ĐS: M = 4 5. (ĐH_Khối A 2006) n  1 7  Tìm số hạng chứa x trong khai triển nhị thức Newton của  4 + x  , biết rằng 26 x  C 2 n +1 + C 2 n +1 +  + C 2 n +1 = 2 − 1 , (n nguyên dương và C n là số tổ hợp chập k của n phần tử). 1 2 n 20 k ĐS: 210 6. (ĐH_Khối D 2008) 2 n −1 Tìm số nguyên dương n thỏa mãn hệ thức C 2 n + C 2 n +  + C 2 n = 2048 . ( C n là số tổ hợp chập k của 1 3 k n phần tử). ĐS: n=6 7. (ĐH_Khối D 2007) Tìm hệ số của x5 trong khai triển thành đa thức của x(1− 5+x2(1+3x)10. 2x) ĐS: 3320 Chuyên đề: ĐẠI SỐ TỔ HỢP_SỐ PHỨC 3
  4. 8. (ĐH_Khối D 2003) − Với n là số nguyên dương, gọi a3n−3 là hệ số của x3n 3 trong khai triển thành đa thức của (x2+1)n(x+2)n. Tìm n để a3n−3=26n. ĐS: n=5 9. (ĐH_Khối D 2002) Tìm số nguyên dương n sao cho Cn + 2C1 + 4Cn +  + 2n Cn = 243 . 0 n 2 n ĐS: n=5 10. (ĐH_Khối B 2008) n +1  1 1  1 Chứng minh rằng  k + k +1  = k (n, k là các số nguyên dương, k≤n, C n là số tổ hợp chập k n + 2  n +1 C n +1  C n C  k của n phần tử). 11. (ĐH_Khối B 2007) Tìm hệ số của số hạng chứa x10 trong khai triển nhị thức Newton của (2+x)n, biết: − − − k 3nCn0− n 1Cn1+3n 2Cn2− n 3Cn3+ … +(− nCnn=2048 (n là số nguyên dương, C n là số tổ hợp chập k của n 3 3 1) phần tử). ĐS: 22 12. (ĐH_Khối B 2006) Cho tập A gồm n phần tử (n≥4). Biết rằng, số tập con gồm 4 phần tử của A bằng 20 lần số tập con gồm 2 phần tử của A. Tìm k∈{1,2,…,n} sao cho số tập con gồm k phần tử cua A lớn nhất. ĐS: k=9 13. (ĐH_Khối B 2003) 2 2 − 1 1 23 − 1 2 2 n +1 − 1 n k Cho n là số nguyên dương. Tính tổng C n + 0 Cn + Cn +  + C n , ( C n là số tổ hợp 2 3 n +1 chập k của n phần tử). 3 n +1 − 2 n +1 ĐS: n +1 14. (ĐH_Khối B 2002) Cho đa giác đều A1A2…An (n≥2, n nguyên) nội tiếp đường tròn tâm (O). Biết rằng số tam giác có các đỉnh là 3 trong 2n điểm A1A2…An nhiều gấp 20 lần số hình chữ nhật có các đỉnh là 4 trong 2n điểm A1A2…An, tìm n. ĐS: n=8 15. (ĐH_Khối A 2008) Cho khai triển (1+2x)n=a0+a1x+ … +anxn, trong đó n∈N* và các hệ số a0, a1,…an thỏa mãn hệ thức a a a 0 + 1 +  + n = 4096 . Tìm số lớn nhất trong các số a0, a1,…an. 2 2n ĐS: a8=126720 16. (ĐH_Khối A 2007) 1 1 3 1 5 1 2n −1 22n − 1 C k Chứng minh rằng C1 n + C2n + C2n +  + 2 C2n = , ( n là số tổ hợp chập k của n 2 4 6 2n 2n + 1 phần tử). 17. (ĐH_Khối A 2005) Tìm số nguyên dương n sao cho C 2 n +1 − 2.2C 2 n +1 + 3.2 C 2 n +1 − 4.2 C 2 n +1 +  + ( 2n + 1).2 C 2 n +1 = 2005 , 1 2 2 3 3 4 2n 2 n +1 k ( C n là số tổ hợp chập k của n phần tử). ĐS: n=1002 18. (ĐH_Khối A 2004) Tìm hệ số của x8 trong khai triển thành đa thức của [1+x2(1− 8. x)] ĐS: 238 Chuyên đề: ĐẠI SỐ TỔ HỢP_SỐ PHỨC 4
  5. 19. (ĐH_Khối A 2002) Cho khai triển nhị thức n n n −1 n −1 n  x2 1 − −x   x −1   x −1   − x   x −1  − x   −x   2 + 2 3  = C n  2 2  + C n  2 2   2 3  +  + C n −1  2 2  2 3  + C n  2 3  0 1 n n                           (n là số nguyên dương). Biết rằng trong khai triển đó C n = 5C n và số hạng thứ 4 bằng 20n, tìm n và x. 3 1 ĐS: n=7, x=4 20. Cho số phức z=1+i. a. Viết khai triển nhị thức Newton của nhị thức (1+i)n. b. Tính các tổng S1=1− n2+Cn4− n6+… C C S2=Cn1− n3+Cn5− C … 21. Chứng minh rằng C100 –C100 +C100 –C100 + … –C100 +C100100=–250. 0 2 4 6 98 −o0o− Chuyên đề: ĐẠI SỐ TỔ HỢP_SỐ PHỨC 5
Đồng bộ tài khoản