Sửa chữa và bảo vệ ADN

Chia sẻ: Nguyen Phuonganh | Ngày: | Loại File: PDF | Số trang:14

0
207
lượt xem
74
download

Sửa chữa và bảo vệ ADN

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Cơ chế sửa sai sinh học Tế bào sống có hàng loạt hệ thống sai hỏng DNA theo nhiều cách khác nhau. Tỷ lệ đột biến tự nhiên thấp do nhờ tính hiệu quả của hệ thống sửa sai này. Sai hỏng của hệ thống sửa sai này dẫn đến tỷ lệ đột biến cao.

Chủ đề:
Lưu

Nội dung Text: Sửa chữa và bảo vệ ADN

  1. Sửa chữa và bảo vệ ADN 1. Cơ chế sửa sai sinh học Tế bào sống có hàng loạt hệ thống sai hỏng DNA theo nhiều cách khác nhau. Tỷ lệ đột biến tự nhiên thấp do nhờ tính hiệu quả của hệ thống sửa sai này. Sai hỏng của hệ thống sửa sai này dẫn đến tỷ lệ đột biến cao. 1.1. Quang phục hoạt (photoreactivation) hay sửa sai nhờ ánh sáng (light repair)
  2. Sau khi xử lý tia tử ngoại gây đột biến, nếu đưa ra ánh sáng thì phần lớn sai hỏng được phục hồi nhờ enzyme photolyase. Enzyme này gắn vào photodimer cắt nó thành các monomer dưới tác dụng của ánh sáng mặt trời có bước sóng 320-370 nm. Sau đó phục hồi các base ban đầu
  3. Sự tạo thành và sự loại bỏ dimer thymine 1.2. Sửa sai bằng làm mất nhóm alkyl (dealkylation) Enzyme alkyltransferasecos thể sửa trực tiếp các sai hỏng. Chúng cắt nhóm alkyl từ chất nitrosoguanine và ethylmethnesulfonate và gắn vào vị trí O- 6 guanine. Enzyme methyltransferase của E. coli có khả năng chuyển nhóm methyl từ chất O-6 methylguanine sang gốc cistein trên phân tử protein. Tuy nhiên hệ thống sửa sai này có thể bảo hòa nếu mức độ alkyl hóa đủ cao.
  4. * Sửa sai bằng cắt bỏ (excision repair pathway) Phần lớn các cơ chế sửa sai khác thực hiện theo lối cắt bỏ (excistion repair) không cần ánh sáng nhờ các nuclease, sau đó thay vào các base đúng. Có thể xảy ra theo nhiều cách: + Cắt các base (base excision repair) Sự cắt bỏ các base sai hỏng nhờ các enzyme DNA glycosylase. Các enzyme này nhận biết các base bị biến đổi và các điểm mất purine hay mất pyrimidine và thủy giải liên kết N- glycosilic nối base với đường. Rồi enzyme AP endonuclease cắt liên kết đường và phosphate gần base bị biến đổi. Sau đó enzyme thứ ba,
  5. deoxyribophosphodiesterase loại bỏ từng nucleotide kế tiếp nhau ở đoạn bị hỏng. Sau đó, DNA polymerase lấp đầy khoảng trống với các nucleotide bổ sung với sợi khuôn còn lại. Enzyme DNA ligase sẽ gắn các khe hở giữa 2 đầu 3'-5' . Trong tế bào tồn tại một số DNA glycosylase. Chẳng hạn, enzyme uracil- DNA glycosylase cắt uracil khỏi DNA. Uracil tạo thành do đột biến mất nhóm amin ngẫu nhiên ở cytosine, dẫn đến đột biến đồng hoán thay C bằng T. Enzyme này phát hiện ra uracil trên DNA như là một bất thường, chúng sẽ cắt bỏ và sửa sai. + Cắt các nucleotide: Sự cắt bỏ vùng có nhiều pyrimidine dimer được thực hiện
  6. nhờ enzyme exinuclease (enzyme rạch mạch hay enzyme tạo khấc trên DNA) như phức hợp 3 enzyme được mã hóa bới gene uvr ABC của E. coli. Phức hợp này cắt đoạn 12 nucleotide trên một mạch: 8 nucleotide từ một đầu bị sai hỏng và 4 nucleotide của đầu còn lại. Khoảng trống của 12 nucleotide này sẽ được lấp đầy nhờ enzyme DNA polymerase I dựa vào mạch đơn bổ sung kia của trình tự DNA gốc. DNA ligase sẽ gắn vào các khe hở.
  7. Sửa sai bằng cắt bỏ nucleotide + Đọc sửa đối với các base bắt cặp sai Cơ chế đọc sửa đối với các base bắt cặp sai (proofreading for base-pair matching) được thực hiện trong sao chép
  8. DNA. Trong quá trình sao chép, trước khi thực hiện phản ứng polymer hóa nối các nucleotide, các nucleotide triphotphate mới phải bắt cặp bổ sung với mạch khuôn. Nếu sự bắt cặp sai xảy ra, DNA polymerase sẽ loại bỏ nucleotide bắt cặp sai. Ngay cả trước khi nucleotide mới ráp vào, enzyme dò lại cặp base cuối, nếu chúng không bắt cặp thì sự polymer hóa tiếp theo bị dừng. Cặp nucleotide ở đầu cuối 3' bắt cặp sai sẽ bị loại bỏ nhờ hoạt tính exonuclease3'®5' của DNA polymerase. Khi đã bắt cặp đúng, quá trình polymer hóa mới được tiếp tục. Hoạt tính đọc sửa đối với các base bắt cặp sai là đặc tính của nhiều DNA polymerase đảm bảo cho sự kéo dài chính xác của mạch đạng được tổng
  9. hợp. + Sửa sai dựa vào tính tương đồng (Homology-dependent repair system)
  10. Mô hình bẻ gãy sợi đôi nhờ trao đổi chéo Một hệ thống sửa sai quan trọng đã phát hiện tính chất bổ sung đối song song của 2 mạch đơn DNA để phục hồi đoạn sai hỏng trở lại trạng thái bình thường ban đầu. Trong hệ thống này, đoạn DNA sai hỏng bị cắt bỏ và thay bằng một đoạn nucleotide mới được tổng hợp bổ sung với sợi khuôn đối diện. Sự sửa sai xảy ra qua sợi khuôn và nguyên tắc của sao chép DNA bảo đảm sự sửa sai hoàn thành với độ chính xác cao - đó là sự giải phóng sai hỏng (error- free). Có 2 hệ thống chủ yếu để loại bỏ sai hỏng: Hệ thống sửa chữa sai hỏng phát hiện ra trước khi sao chép và hệ thống sửa chửa sai hỏng phát hiện trong quá trình diễn biến sao chép (sửa sai sau
  11. sao chép). + Sửa sai đứt mạch kép (repair of double-strand break) Khi cả 2 sợi của chỗi xoắn kép bị đứt ở cùng một vị trí, được gọi là đột biến đứt mạch đôi, có thể gây ra sai hình nhiễm sắc thể, làm chết tế bào hoặc tạo ra trạng thái tiến ung thư. Tế bào sử dụng nhiều protein và con đường sửa sai đứt gãy mạch đôi là thực hiện tái tổ hợp trong giảm phân. Quá trình sửa chữa do trao đổi chéo trong giảm phân xảy ra như sau . Trên một nhiễm sắc thể xảy ra sự đứt mạch đôi và kết quả ăn mòn các đầu mút ở đoạn ngắn của DNA sợi đơn. Đầu 3' của một trong những sợi này
  12. "xâm lấn" vào một chromatid. Đoạn xâm lấn làm mồi cho tổng hợp các base bị mất của nó nhờ sử dụng sợi đối song song của chromatid như là sợi khuôn. Sự tổng hợp mới này sẽ tạo ra một vòng sợi đơn lai với một sợi đơn không xâm lấn. Vì vậy tạo ra một vùng dị hợp tử nhỏ "Aa" và sử dụng như mạch khuôn để khôi phục các base bị mất trên sợi đó. DNA polymerase sẽ lấp đầy chỗ trống và enzyme ligase sẽ nối các đầu mút xảy ra trong cấu trúc đặc biệt giống với trao đổi chéo 2 sợi đơn. Cấu trúc này cũng chứa các đoạn bắt cặp không tương đồng đơn giản. Trao đổi chéo sợi đơn được gọi là cấu trúc Holliday (Holliday structure) do Holliday phát hiện vào những năm 1960.
  13. + Hệ thống SOS Ở tế bào vi khuẩn hoặc tế bào eukaryote bị sai hỏng nặng do chiếu tia uv, tia X hoặc do tác dụng của các hóa chất gây đột biến, hệ thống sửa sai khẩn cấp được khởi động. Ở E. coli, hệ thống này có liên quan với hai protein được mã hóa bởi gene lexAvà recA. Protein lexAlà một chất ức chế, nó gắn vào hộp SOS, chồng lấp các promotor của các gene SOS, ngăn cản sự phiên mã nhóm các gene của hệ thống SOS. Một vài sản phẩm của DNA bị tổn thương sẽ làm hoạt hóa enzyme protease recA. Protein recAbị hoạt hóa sẽ cắt bỏ protein lexA, cho phép các gene của hệ thống SOS phiên mã. Phản ứng của hệ thống SOS xảy ra trong thời gian ngắn nhưng
  14. phức tạp. Nó bao gồm các quá trình làm tăng hoạt tính tái tổ hợp, thay đổi trong khởi sự sao chép, ức chế nuclease và kích thích phục hồi sao chép và chuyển sai hỏng thành sửa sai úp sấp (error-prone replication). Tế bào bây giờ sẽ xảy ra sự sao chép DNA nhanh hơn bình thường. Nếu sửa sai không kịp, tế bào phải chấp nhận hoặc bị đột biến hoặc bị chết.

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản