Sức bền vật liệu P7

Chia sẻ: Hoang Nhan | Ngày: | Loại File: PDF | Số trang:11

0
134
lượt xem
86
download

Sức bền vật liệu P7

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Thanh chịu lực phức tạp = Khi trên MCN của thanh xuất hiện từ hai thành phần nội lực trở lên thì gọi là thanh chịu lực phức tạp

Chủ đề:
Lưu

Nội dung Text: Sức bền vật liệu P7

  1. Ch−¬ng 7. Thanh chÞu lùc phøc t¹p Ch−¬ng 7. thanh chÞu lùc phøc t¹p I. Kh¸i niÖm ⇒ Khi trªn MCN cña thanh xuÊt hiÖn tõ hai thμnh phÇn néi lùc trë lªn th× gäi lμ thanh chÞu lùc phøc t¹p. VÝ dô, mét trôc truyÒn võa chÞu xo¾n võa chÞu uèn, mét t−êng ch¾n võa chÞu nÐn võa chÞu uèn, … ⇒ Tæng qu¸t nhÊt khi thanh chÞu lùc phøc t¹p, néi lùc trªn MCN cã thÓ cã 6 thμnh phÇn (h×nh 7.1). ⇒ Ph−¬ng ph¸p tÝnh: ¸p dông nguyªn Qx Qz x lý céng t¸c dông: øng suÊt hay biÕn d¹ng Mz do nhiÒu yÕu tè (ngo¹i lùc, nhiÖt ®é, ®é Qy Mx lón cña gèi tùa, …) g©y ra ®ång thêi trªn My z mét thanh th× b»ng tæng øng suÊt hay y biÕn d¹ng do tõng yÕu tè g©y ra trªn H×nh 7.1 thanh ®ã. II. Uèn xiªn 1. §Þnh nghÜa ⇒ Khi trªn mäi MCN chØ cã hai thμnh phÇn néi lùc lμ Mx vμ My n»m trong c¸c mÆt ph¼ng qu¸n tÝnh chÝnh trung t©m cña MCN (h×nh 7.2). Khi chó ý ®Õn lùc c¾t trªn MCN cã thÓ cã c¸c thμnh néi lùc Mx, Qy , My vμ Qx. a) b) §−êng t¶i Mx träng My M 0 x Mx x α V My M z z y MÆt ph¼ng t¶i träng y H×nh 7.2 ⇒ Gäi M lμ vect¬ tæng cña c¸c vect¬ Mx vμ My, n»m trong mÆt ph¼ng V chøa trôc z, nh−ng kh«ng trïng víi mét mÆt ph¼ng qu¸n tÝnh chÝnh trung t©m nμo. Giao tuyÕn cña mÆt ph¼ng nμy víi mÆt ph¼ng c¾t ngang gäi lμ ®−êng t¶i träng. ⇒ Trong uèn xiªn ®−êng t¶i träng ®i qua träng t©m nh−ng kh«ng trïng víi mét trôc qu¸n tÝnh trung t©m nμo (h×nh 7.2b ). 63
  2. Ch−¬ng 7. Thanh chÞu lùc phøc t¹p 2. øng suÊt ph¸p trªn MCN ⇒ Theo nguyªn lý céng t¸c dông, øng suÊt ph¸p t¹i mét ®iÓm bÊt k× trªn M M MCN cã to¹ ®é x, y ®−îc tÝnh theo c«ng thøc: σ z = J y + J x x y (7.1) x y ⇒ Mx, My coi lμ d−¬ng khi lμm c¨ng phÇn chiÒu d−¬ng cña trôc y, trôc x. ⇒ Trong kÜ thuËt ng−êi ta dïng c«ng thøc sau ®Ó kh«ng cÇn chó ý ®Õn dÊu Mx My cña Mx, My vμ to¹ ®é x, y: σz = ± y± x (7.2) Jx Jy ⇒ Ta sÏ chän dÊu “+” hoÆc dÊu “-“ tr−íc mçi sè h¹ng tuú theo c¸c m«men uèn Mx vμ My g©y ra øng suÊt kÐo hay nÐn ë ®iÓm ®ang xÐt. ⇒ NÕu gäi α lμ gãc cña ®−êng t¶i träng hîp víi trôc x (h×nh 7.2b): tgα = Mx/My ⇒ Mx = Msinα; My = Mcosα ⇒ Gãc α ®−îc gäi lμ d−¬ng khi quay tõ chiÒu d−¬ng trôc x ®Õn ®−êng t¶i träng theo chiÒu kim ®ång hå. 3. VÞ trÝ ®−êng trung hoμ ⇒ Tõ (7.1) ta thÊy ph−¬ng tr×nh ®−êng trung hoμ: Mx M M J y + y x = 0 (7.3) hay y = − x . x .x = x.tg β (7.4) Jx Jy M y Jy Mx Jx 1 Jx trong ®ã tgβ = − hay tgβ = − tgα J (7.5) My Jy y ⇒ §−êng trung hoμ lμ mét ®−êng th¼ng ®i §−êng qua träng t©m cña MCN vμ kh«ng vu«ng gãc A B trung víi ®−êng t¶i träng nh− trong uèn ph¼ng. hoμ σ ⇒ Tõ biÓu thøc (7.5) ⇒ ®èi víi c¸c MCN min 0 cã v« sè hÖ trôc qu¸n tÝnh chÝnh trung t©m nh− h×nh trßn, c¸c ®a gi¸c ®Òu c¹nh, …( Jx= Jy nªn β tgαtgβ = -1) th× kh«ng x¶y ra hiÖn t−îng uèn D C xiªn ph¼ng. V× ®−êng t¶i träng sÏ ≡ víi mét trôc qu¸n tÝnh chÝnh trung t©m, cßn ®−êng trung hoμ sÏ trïng víi mét trôc qu¸n tÝnh σmax chÝnh trung t©m thø hai vu«ng gãc víi ®−êng t¶i träng. Bμi to¸n khi ®ã chØ lμ uèn ph¼ng. H×nh 7.3 4. BiÓu ®å øng suÊt ph¸p trªn MCN ⇒ Theo (7.1) mÆt øng suÊt lμ mÆt ph¼ng, nªn øng suÊt ph¸p ph©n bè ®Òu trªn ®−êng th¼ng song song víi ®−êng trung hoμ. Do ®ã ta cã thÓ vÏ biÓu ®å 64
  3. Ch−¬ng 7. Thanh chÞu lùc phøc t¹p ph©n bè øng suÊt ph¸p trªn MCN trong hÖ to¹ ®é nh− h×nh 7.3. Trôc tung lμ ®−êng trung hoμ, trôc hoμnh vu«ng gãc víi ®−êng trung hoμ. 5. §iÒu kiÖn bÒn ⇒ §iÓm nguy hiÓm lμ c¸c ®iÓm xa ®−êng trung hoμ nhÊt vÒ phÝa kÐo hoÆc nÐn ⇒ tr¹ng th¸i øng suÊt cña ®iÓm nguy hiÓm lμ tr¹ng th¸i øng suÊt ®¬n. ⇒ §iÒu kiÖn bÒn cã d¹ng: - §èi víi vËt liÖu dÎo: σ max ≤ [ σ] (7.6) - §èi víi vËt liÖu gißn: σ max ≤ [ σ]k (7.7) σ min ≤ [ σ]n (7.8) Mx My ⎡M My ⎤ σ max = yk + x k ; σmin = − ⎢ yn + xn ⎥ x (7.9) Jx Jy ⎢ Jx ⎣ Jy ⎥ ⎦ ⇒ NÕu MCN cña thanh lμ nh÷ng mÆt c¾t cã thÓ néi tiÕp trong h×nh ch÷ nhËt (h×nh 7.4): x k = x n = x max ⇒ y k = y n = ymax Mx My σmax = ⎪σmin⎪; σm ax = + (7.10) Wx Wy J J trong ®ã : Wx = y ; Wy = x x y (7.11) max max H×nh 7.4 ⇒ Tr−êng hîp nμy ®iÒu kiÖn bÒn sÏ lμ: Mx My Mx My -VËt liÖu dÎo: + ≤ [ σ ] (7.12); VËt liÖu gißn: + ≤ [ σ ]k (7.13) Wx Wy Wx Wy ⇒ Tõ ®iÒu kiÖn bÒn trªn ta suy ra ba bμi to¸n c¬ b¶n sau: - KiÓm tra bÒn theo (7.6) hoÆc (7.7) hoÆc (7.8). - T×m t¶i träng cho phÐp. Gäi [Pi] lμ t¶i träng suy réng cho phÐp, ta cã: M x = k1 [ Pi ] ; M y = k 2 [ Pi ] (7.14) k1, k2 lμ c¸c h»ng sè. Tõ ®iÒu kiÖn bÒn, vÝ dô theo (7.12) ta suy ra: k1 [ Pi ] k 2 [ Pi ] ⎛ k k ⎞ + ≤ [ σ] hay [ Pi ] ≤ [ σ] / ⎜ 1 + 2 ⎟ (7.15) Wx Wy ⎜W W ⎟ ⎝ x y ⎠ - Chän kÝch th−íc MCN ⇒ V× ch−a biÕt trÞ sè Jx, Jy, xk, xn, yk, yn ⇒ ta cã thÓ chän thö tÝnh theo uèn ph¼ng do thμnh phÇn m«men ®ßi hái kÝch th−íc lín, råi thö dÇn. ⇒ §èi víi c¸c mÆt c¾t (h×nh 7.4), ®Çu tiªn ta cã thÓ tÝnh theo c«ng thøc: M x + CM y Wx Wx ≥ víi C = (7.16) [σ] Wy 65
  4. Ch−¬ng 7. Thanh chÞu lùc phøc t¹p ⇒ §èi víi h×nh ch÷ nhËt cã chiÒu cao h vμ bÒ réng b th× C = h/b. §èi víi mÆt c¾t h×nh ch÷ I lóc ®Çu cã thÓ lÊy C = 8, vμ h×nh ch÷ U lÊy C = 6, sau ®ã kiÓm tra tÝnh to¸n l¹i. VÝ dô 7.1: Cho dÇm chÞu lùc nh− h×nh 7.5. X¸c ®Þnh sè hiÖu mÆt c¾t dÇm thÐp ch÷ I, vÞ trÝ ®−êng trung hoμ. Cho P = 2400N; q = 4000N/m; l = 2m;α = 300; [σ] =16000N/m2. Bμi gi¶i: MÆt c¾t nguy hiÓm t¹i ngμm cã: A q ql 2 Mx = + Pl cos α = 12160 Nm B 2 x M y = Pl sin α = 2400Nm Thö lÇn thø nhÊt ta lÊy C = 8. Theo c«ng thøc (7.39): P α M x + CM y y Wx ≥ = 196cm 3 n [ σ] x Ta chän mÆt c¾t ch÷ I sè 20 cã c¸c gi¸ trÞ β nhá h¬n vμ gÇn nhÊt Wx=184cm3; σmax Wy=23,1cm3. y Thö l¹i: σ max = −σ min M M σmin σ max = x + y = 17000N / cm 2 H×nh 7.5 Wx Wy σ max − [ σ ] 17000 − 16000 100 = 100 = 6, 2% > 5% V× [σ] 16000 Do ®ã ta lÊy mÆt c¾t sè 20a cã Wx = 203cm3 , Wy = 28,2cm3 Khi ®ã: M M 1216000 240000 σ max = x + y = + = 14500N / cm 2 Wx Wy 203 28, 2 øng suÊt nhá h¬n: σ max − [ σ ] 14500 − 16000 100 = 100 = −9, 4% [σ] 16000 V× gi÷a thÐp cã sè hiÖu 20 vμ 20a kh«ng cßn sè hiÖu nμo kh¸c nªn ta chän dÇm thÐp cã sè hiÖu 20a. X¸c ®Þnh vÞ trÝ ®−êng trung hoμ. Tra b¶ng víi I(20a) ta cã Jx=2030cm4; Jy=155cm4. Do ®ã t¹i mÆt c¾t ngμm, ph−¬ng cña ®−êng trung hoμ lμ : 66
  5. Ch−¬ng 7. Thanh chÞu lùc phøc t¹p J x M y max 2030 × 2400 tgβ = = = +2,58 J y M x max 155 × 12160 hay β = +68050 III. Uèn - kÐo (nÐn) ®ång thêi 1. §Þnh nghÜa ⇒ Mét thanh ®−îc gäi lμ chÞu uèn - kÐo (nÐn) ®ång thêi khi trªn MCN cña thanh cã c¸c thμnh phÇn néi lùc lμ lùc däc Nz, m«men uèn Mx, My (h×nh 7.6). ⇒ VÝ dô èng khãi võa chÞu nÐn do träng l−îng b¶n th©n G, võa chÞu uèn do t¶i träng giã q (h×nh 7.7). Mx O x q Nz My G z y H×nh 7.7 H×nh 7.6 2. øng suÊt ph¸p trªn MCN ⇒ øng suÊt ph¸p t¹i mét ®iÓm trªn MCN ®−îc x¸c ®Þnh theo c«ng thøc: Nz M x My σz = + y+ x (7.18) F Jx Jy Nz ⎛ M My ⎞ σz = . ⎜ 1 + x2 y + x⎟ hoÆc F ⎜ N zi x ⎝ N zi 2 ⎟ y ⎠ (7.19) trong ®ã: F - diÖn tÝch MCN; ix, iy - b¸n kÝnh qu¸n tÝnh chÝnh: ix = Jx / F ; iy = J y / F ; Jx, Jy- m«men qu¸n tÝnh chÝnh trung t©m cña MCN; x, y - to¹ ®é cña ®iÓm tÝnh øng suÊt. ⇒ Quy −íc dÊu cña Nz (ch−¬ng 2), cña Mx, My nh− trong uèn xiªn. ⇒ C«ng thøc kü thuËt cã d¹ng: 67
  6. Ch−¬ng 7. Thanh chÞu lùc phøc t¹p Nz Mx My σz = ± ± y± x (7.20) F Jx Jy ⇒ C¸c gi¸ trÞ ®Òu lÊy gi¸ trÞ tuyÖt ®èi. Cßn lÊy dÊu “+” hoÆc “-” tr−íc mçi sè h¹ng tuú theo lùc däc lμ kÐo hay nÐn vμ c¸c m«men uèn Mx, My g©y ra øng suÊt kÐo hay nÐn ë ®iÓm ®ang xÐt. 3. VÞ trÝ ®−êng trung hoμ ⇒ Tõ (7.18) ta suy ra ph−¬ng tr×nh ®−êng trung hoμ lμ: Nz Mx My B + y+ x=0 (7.21) F Jx Jy Mx My hay: 1 + y+ x = 0 (7.22) N zi2 x N zi2 y ⇒ §−êng trung hoμ lμ mét ®−êng th¼ng kh«ng ®i qua träng t©m cña MCN nh− trong uèn xiªn. σ=N/F 4. BiÓu ®å øng suÊt ph¸p trªn MCN ⇒ T−¬ng tù nh− trong uèn xiªn do mÆt c¾t øng suÊt lμ ph¼ng, nªn øng H×nh 7.8 suÊt ph¸p ph©n bè ®Òu trªn ®−êng th¼ng song song víi ®−êng trung hoμ. BiÓu ®å ph©n bè øng suÊt ®−îc vÏ nh− h×nh 7.8. 5. §iÒu kiÖn bÒn ⇒ §iÓm nguy hiÓm lμ c¸c ®iÓm ë chu vi, xa ®−êng trung hoμ nhÊt vÒ phÝa kÐo hoÆc phÝa nÐn. Tr¹ng th¸i øng suÊt cña ®iÓm nguy hiÓm lμ tr¹ng th¸i øng suÊt ®¬n ⇒ ®iÒu kiÖn bÒn lμ : - §èi víi vËt liÖu dÎo: σ max ≤ [ σ] (7.23) - §èi víi vËt liÖu gißn: σ max ≤ [ σ]k ; σ min ≤ [ σ]n (7.24) Nz Mx My trong ®ã: σ max = ± + y+ x (7.25) F Jx Jy Nz Mx My σ min = ± − y− x (7.26) F Jx Jy xk, yk lμ to¹ ®é cña ®iÓm chÞu kÐo c¸ch xa ®−êng trung hoμ nhÊt. xn, yn lμ to¹ ®é cña ®iÓm chÞu nÐn c¸ch xa ®−êng trung hoμ nhÊt. 68
  7. Ch−¬ng 7. Thanh chÞu lùc phøc t¹p ⇒ NÕu MCN cña thanh cã d¹ng nh− trªn h×nh 7.9 th× lÝ luËn t−¬ng tù nh− trong uèn xiªn ta cã: N M My σ max = z + x + (7.27) F W W x y Nz Mx My σ min = − − − (7.28) F Wx Wy VÝ dô 7.2: Cho mét thanh chÞu lùc nh− h×nh 7.9a. T×m gi¸ trÞ øng suÊt σmax vμ σmin, vÞ trÝ ®−êng trung hoμ vμ vÏ biÓu ®å ph©n bè a) b) øng suÊt ph¸p trªn mÆt c¾t A nguy hiÓm. Cho: P1 = 160 kN; P2 = 4kN; P0 = 240kN; σmin q=2kN/m; l=2m; b=12cm; h=16 cm. Bμi gi¶i MÆt c¾t nguy hiÓm t¹i B ®Çu ngμm. VÞ trÝ ®−êng trung hoμ vμ biÓu ®å øng suÊt ph¸p ®−îc vÏ trªn h×nh σmax 7.9b. Lùc däc: H×nh 7.9 N z = −P0 − P1 = −(240 + 160) = −400kN . M«men uèn: P1h ql2 2 × 4 ×104 Mx = + = 160 × 8 + = 1680kNcm 2 2 100 × 2 Pb P l M y = 1 + 2 = 160 × 6 + 4 × 102 = 1360kNcm 2 2 Gi¸ trÞ øng suÊt ph¸p lín nhÊt vμ bÐ nhÊt theo (7.27), (7.28) lμ: N M My 400 1680 × 6 1360 × 6 σ max = − z + x + =− + + = 4, 75kNcm F Wx Wy 12 × 16 12 × 62 16 × 122 Nz Mx My400 1680 × 6 1360 × 6 σ min = − − − −=− − = −8,91kNcm F Wx Wy 12 × 16 12 × 62 16 × 122 VÞ trÝ ®−êng trung hoμ: ®−êng trung hoμ c¾t trôc x vμ trôc y t¹i c¸c ®iÓm: 69
  8. Ch−¬ng 7. Thanh chÞu lùc phøc t¹p N zi 2 N zi2 x0 = − y y0 = − x My Mx ; h2 b2 trong ®ã i = 2 x = 21,3cm ; i y = = 12cm 2 2 2 12 12 M >0 Nz < 0 ; Mx > 0 ; y . Khi thay b»ng sè ta ®−îc: x 0 = 3,53cm ; y 0 = 5, 07cm IV. Uèn - xo¾n ®ång thêi 1. §Þnh nghÜa ⇒ Mét thanh gäi lμ xo¾n vμ uèn ®ång thêi. Khi trªn MCN cña thanh cã hai thμnh phÇn néi lùc lμ m«men xo¾n vμ m«men uèn (h×nh 7.10). 2. øng suÊt trªn MCN trßn - ®iÒu kiÖn bÒn ⇒ øng suÊt ph¸p do m«men uèn g©y ra. øng suÊt tiÕp do m«men xo¾n g©y nªn ph©n bè nh− tr−êng hîp xo¾n thuÇn tuý (bá qua ¶nh h−ëng cña lùc H×nh 7.10 H×nh 7.11 c¾t Q). ⇒ §iÓm nguy hiÓm trªn mÆt c¾t nguy hiÓm lμ giao ®iÓm cña ®−êng t¶i träng víi chu vi: ®iÓm A hoÆc B (h×nh 7.11). øng suÊt ph¸p vμ tiÕp cã gi¸ trÞ: Mu M2 + M2 Mz (7.29) τ max = W A,B σmax = σmin = = A B x y (7.30) Wu Wu p ⇒ V× ph©n tè ë tr¹ng th¸i øng suÊt ph¼ng nªn ®iÒu kiÖn bÒn cã d¹ng: σ td max ≤ [ σ] (7.31) ⇒ VÝ dô theo thuyÕt bÒn øng suÊt tiÕp lín nhÊt ta cã: σ td = σ 2 + 4τ 2 ⇒ Thay c¸c gi¸ trÞ cña σ vμ τ theo (7.29), (7.30) vμ chó ý Wp = 2Wu, ta cã: M2 + M2 + M2 M td ; M td = M x + M y + M z 2 2 2 σ max = = x y z (7.32) Wu Wu 70
  9. Ch−¬ng 7. Thanh chÞu lùc phøc t¹p ⇒ Theo thuyÕt bÒn thÕ n¨ng biÕn ®æi h×nh d¸ng : M 2 + M 2 + 0, 75M 2 M td σ max = σ + 3τ = = víi M td = M 2 + M 2 + 0, 75M 2 (7.33) 2 2 x y z x y z Wu Wu ⇒ Theo thuyÕt bÒn Mo ta cã: σ td = σ1 − ασ3 ≤ [ σ ] k [ σ] k σ ⎛σ⎞ 2 trong ®ã: σ1,3 = ± ⎜ ⎟ + τ2 ; α= n 2 ⎝2⎠ [ σ] 1− α 1+ α víi M td = M2 + M2 + x y M2 + M2 + M2 x y z (7.34) 2 2 Mtd ®−îc tÝnh theo c¸c thuyÕt bÒn thÝch hîp (7.32), (7.33), (7.34). VÝ dô 7.3: Mét trôc truyÒn b»ng thÐp chÞu lùc nh− trªn h×nh 7.12. Träng l−îng Puli G = 3kN, c«ng suÊt vμ sè vßng quay cña m«t¬ lμ: W = 50kN, n = 500vg/ph. KiÓm tra bÒn trôc theo thuyÕt bÒn thÕ n¨ng biÕn ®æi h×nh d¸ng biÕt [σ] = 12kN / cm2 . H×nh 7.12 Bμi gi¶i: S¬ ®å chÞu lùc cña trôc biÓu diÔn trªn h×nh 7.12a, trong ®ã: πn 3,14 × 500 W ω= = = 52, 4rad / s ; M = = 0,955 × 103 Nm = 95,5kNcm 30 30 ω Lùc c¨ng d©y ®ai x¸c ®Þnh theo ®iÒu kiÖn c©n b»ng cña m«men xo¾n: T1D t1D t1D 2M 2 × 95,5 M= − = ⇒ t1 = = = 2,38kN ; 2 2 2 D 80 T1 = 2t1 = 2 × 2.38 = 4, 76kN ; P = T1 + t1 = 4, 76 + 2,38 = 7,14kN øng suÊt t−¬ng ®−¬ng tÝnh theo thuyÕt bÒn thÕ n¨ng biÕn ®æi h×nh d¸ng: 71
  10. Ch−¬ng 7. Thanh chÞu lùc phøc t¹p M td M 2 + M 2 + 0, 75M 2 σ td = = x y z Wx 0,1× d 3 MÆt c¾t nguy hiÓm t¹i C vÒ phÝa CB, t¹i ®ã: Gl Pl Mx = = 75 kNcm ; M y = = 178 kNcm ; M z = 95,5 kNcm 4 4 C¸c biÓu ®å néi lùc ®−îc biÓu diÔn trªn c¸c h×nh 7.12b, c, d. Thay sè vμo ta ®−îc: 752 + 1782 + 0, 75 × 95,52 σ td = = 9, 72 kN / cm 2 < [ σ ] = 12 kN / cm 2 0,1× 6 3 VËy trôc tho¶ m·n ®iÒu kiÖn bÒn. 3. øng suÊt trªn MCN h×nh ch÷ nhËt - ®iÒu kiÖn bÒn ⇒ Gi¶ sö t¹i MCN nguy hiÓm cã c¸c thμnh phÇn néi lùc Mx, My, Mz biÓu diÔn trªn h×nh 7.13. §èi víi tr−êng hîp ®ang xÐt, c¸c ®iÓm B, b D cã øng suÊt ph¸p cùc trÞ: M My D σB = x + max Wx Wy Mz Mx My Mx σD = − min − Wx Wy A h x ⇒ M«men xo¾n sinh ra øng suÊt tiÕp: My B M τA = x max Wp C z Mz τ1 = γτmax = γ C y Wp ; H×nh 7.13 víi Wp = αhb 2 ⇒ Chóng ta ch−a biÕt ®−îc trong ba ®iÓm A, B, C ®iÓm nμo lμ nguy hiÓm. VËy ta ph¶i tÝnh øng suÊt t−¬ng ®−¬ng cho c¶ ba ph©n tè lÊy ë 3 ®iÓm nμy, sau ®ã so s¸nh ®iÓm nμo cã σt® lμ lín nhÊt. Mx My - §èi víi ph©n tè ë ®iÓm B: σ td = σ max = + B B Wx Wy - §èi víi ph©n tè ë ®iÓm A (võa cã øng suÊt ph¸p võa cã τmax): 72
  11. Ch−¬ng 7. Thanh chÞu lùc phøc t¹p 2 2 ⎛ My ⎞ ⎛M ⎞ ⇒ ThuyÕt bÒn øng suÊt tiÕp lín nhÊt: σ = σ + 4τ = ⎜ ⎟ + 4⎜ z ⎟ A 2 2 td ⎜ Wy ⎟ ⎜ Wp ⎟ ⎝ ⎠ ⎝ ⎠ 2 2 ⎛ My ⎞ ⎛M ⎞ ⇒ ThuyÕt bÒn thÕ n¨ng biÕn ®æi h×nh d¸ng: σ = σ + 3τ = ⎜ A td 2 2 ⎟ + 3⎜ z ⎟ ⎜ Wy ⎟ ⎜ Wp ⎟ ⎝ ⎠ ⎝ ⎠ - §èi víi ph©n tè ë ®iÓm C: 2 ⎛ M ⎞ 2 ⎛M ⎞ ⇒ Theo thuyÕt bÒn thø ba, ta cã: σ = ⎜ x ⎟ + 4 ⎜ γ. z ⎟ C td ⎜ Wp ⎟ ⎝ Wx ⎠ ⎝ ⎠ 2 ⎛ M ⎞ 2 ⎛M ⎞ σC = ⎜ x ⎟ + 3 ⎜ γ. z ⎟ ⇒ Theo thuyÕt bÒn thø t−, ta cã: td ⎝ Wx ⎠ ⎜ Wp ⎟ ⎝ ⎠ 73
Đồng bộ tài khoản