Tài liệu toán " Hệ phương trình khác "

Chia sẻ: Phạm Hùng Vĩ | Ngày: | Loại File: PDF | Số trang:4

0
321
lượt xem
170
download

Tài liệu toán " Hệ phương trình khác "

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'tài liệu toán " hệ phương trình khác "', tài liệu phổ thông phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Tài liệu toán " Hệ phương trình khác "

  1. Baøi 5: ⎛ 2m ⎞ Neáu m ≠ 0 : (1) coù 3 nghieäm phaân bieät ⇔ f(0).f ⎜ ⎟ ⇔m I. CAÙC VÍ DUÏ. 2 2 2 Ví duï 1: 3 6 3 6 Vaäy m < − ∨m> heä coù hôn 2 nghieäm. Cho heä phöông trình: 3 2 ⎧x + y = m ⎪ ⎨ 2 Ví duï 2: ⎪(x + 1)y + xy = m(y + 2) ⎩ Giaûi heä phöông trình: 1. Giaûi heä khi m = 4 ⎧xy − 3x − 2y = 16 ⎪ 2. Tìm taát caû caùc giaù trò cuûa tham soá m ñeå heä coù nhieàu hôn 2 nghieäm. ⎨ 2 2 (ÑH Quoác Gia TPHCM Khoái A naêm 1997) ⎪x + y − 2x − 4y = 33 ⎩ Giaûi (ÑH Giao Thoâng Vaän Taûi TPHCM naêm 1999). 1. m = 4 Giaûi ⎧x + y = 4 ⎪ Ñaët u = x − 1, ∨ = y − 2, heä trôû thaønh: Heä ⇔ ⎨ 2 ⎪(x + 1)y + xy = 4(y + 2) ⎧ u ∨ −(u + v) = 23 ⎪ ⎩ ⎨ 2 2 ⎧x = 4 − y ⎧x = 4 − y ⎪ u + v = 38 ⎩ ⎪ ⎪ ⇔⎨ 3 ⇔⎨ 2 ⎪ y − 4y + 8 = 0 2 ⎪(y − 2)(y − 2y − 4) = 0 ⎧ p − s = 23 (1) ⎪ ⎩ ⎩ Ñaët s = u + v, p = u.v ⇒ ⎨ 2 ⎪s − 2p = 38 (2) ⎩ ⎪x = 4 − y ⎧ ⎪x = 4 − y ⎧ ⇔⎨ 2 ⇔⎨ ⎡s = 1 + 85 ⎪ y = 2 ∨ y − 2y − 4 = 0 ⎩ ⎪y = 2 ∨ y = 1 ± 5 ⎩ (1) vaø (2) ⇒ s2 − 2s − 84 = 0 ⇔ ⎢ ⇒ nghieäm (2, 2); (3 − 5,1 + 5),(3 + 5,1 − 5) ⎢s = 1 − 85 ⎣ ⎧x = m − y ⎪ . s = 1 + 85 : (1) ⇒ p = 24 + 85 b. Heä ⇔ ⎨ 3 (*) 2 ⎪ y − my + 2m = 0 (1) ⎩ ⇒ u,v laø nghieäm phöông trình: α 2 − sα + p = 0 (*) coù hôn 2 nghieäm, (1) phaûi coù 3 nghieäm. Vôùi s2 − 4p = (1 + 85)2 − 4(24 + 85) = −10 − 2 85 < 0 Ñaët f(y) = y3 − my2 + 2m ⇒ VN 2 ⇒ f '(y) = 3y − 2my . s = 1 − 85 : (1) ⇒ p = 24 − 85 2m ⇒ u,v laø nghieäm phöông trình: α 2 − sα + p = 0 f '(y) = 0 ⇔ y(3y − 2m) = 0 ⇔ y = 0 ∨ y = 3 Vôùi s2 − 4p = −10 + 2 85 > 0 96 97
  2. ⎧ 1 − 85 + −10 + 2 85 ⎧ 3 − 85 + −10 + 2 85 ⎧ 1 ⎪u = ⎪x = ⎧ 1 ⎧ 1 ⎪x = 10 ⎪ = 5 ⎪ x − 2y = ⎪ ⎪ 2 ⎪ 2 ⇒ heä ⎨ x − 2y ⇔⎨ 5⇔⎨ ⇒⎨ ⇔⎨ ⎪ ⎪ ⎪x + 2y = 0 ⎪ x + 2y = 0 ⎪y = − 1 1 − 85 − −10 + 2 85 5 − 85 − −10 + 2 85 ⎩ ⎩ ⎪ ⎪v = ⎪y = ⎩ 20 ⎩ 2 ⎩ 2 25 ⎧ ⎧ * a> heä voâ nghieäm. 1− 85 − −10 + 2 85 3− 85 − −10 + 2 85 4 ⎪u = ⎪x = ⎪ 2 ⎪ 2 hoaëc: ⇒ ⎨ ⇔⎨ II. BAØI TAÄP ÑEÀ NGHÒ. ⎪ 1− 85 + −10 + 2 85 ⎪ 5− 85 + −10 + 2 85 ⎪v = ⎪y = ⎧ x = y3 + y 2 + y − 2 ⎩ 2 ⎩ 2 ⎪ ⎪ 3 2 5.1. Giaûi heä phöông trình: ⎨y = z + z + z − 2 Ví duï 3: ⎪ 3 2 ⎪z = x + x + x − 2 ⎩ ⎧ 1 ⎪ x − 2y + x + 2y = 5 (ÑH Ngoaïi Thöông TPHCM naêm 1996). ⎪ Giaûi vaø bieän luaän theo a heä phöông trình: ⎨ ⎪ x + 2y = a ⎧x 2 + xy = 6 ⎪ x − 2y ⎪ ⎩ 5.2. Giaûi heä phöông trình: ⎨ 2 2 (ÑH Kinh Teá TPHCM naêm 1995) ⎪x + y = 5 ⎩ Giaûi (ÑH Giao Thoâng Vaän Taûi TPHCM naêm 1996). 1 Ñaët u = ≠ 0, ∨ x + 2y x − 2y ⎧ 2 2 82 ⎪x + y = 9 ⎧u + v = 5 ⎪ 5.3. Giaûi heä: ⎨ ⇒⎨ neân u, v laø nghieäm phöông trình: ⎩ u.v = a ⎪ x + 1 + 10 − x + y = 10 + y + 1 ⎪ y 3 3 y α 2 − 5α + a = 0 (*) ⎩ ∆ = 25 − 4a 25 Ñeå phöông trình coù nghieäm ⇔ ∆ ≥ 0 ⇔ a ≤ 4 25 ⎧ u = α1 ⎧ u = α 2 * a≤ vaø a ≠ 0 : nghieäm ⎨ ∨⎨ vôùi α1 , α 2 laø nghieäm 4 ⎩v = α 2 ⎩v = α1 phöông trình (*). ⎧u + v = 5 * a = 0: ⎨ maø u ≠ 0 ⇒ ∨ = 0, u = 5 ⎩ u.v = 0 98 99
  3. Höôùng daãn vaø giaûi toùm taét ⎧ 2 2 82 ⎪x + y = 9 (1) ⎪ 5.3. ⎨ ⎧x = y3 + y2 + y − 2 (1) ⎪ x + 1 + 10 − x + y = 10 + y + 1 (2) ⎪ ⎪ ⎪ y 3 3 y 5.1. Ta coù: ⎨y = z3 + z2 + z − 2 (2) ⎩ ⎪ 3 2 1 10 ⎛ 1 ⎞ ⎛ 10 ⎞ ⎪z = x + x + x − 2 (3) ⎩ (2) ⇔ x + + − x + y = ⎜x + ⎟ + ⎜ − x + y⎟ y 3 ⎝ y⎠ ⎝ 3 ⎠ (1) ⇔ x = y(y2 + y + 1) − 2 ⎧ 2 10 . Xeùt y ≤ 0 ⇒ x ≤ −2 ⇒ z ≤ −2 ⇒ y ≤ −2 ⎧ 1 ⎧ 1 10 ⎪y + 3 y +1 ⎪ x+ ≥0 + +y≥0 ⎪y 3 ⎪ y ⎪ ⎪ ≥0 (1) + (2) + (3) ⇒ y3 + y 2 + x3 + x 2 + z3 + z2 = 6 ⇔⎨ ⇔⎨ ⇔⎨ y ⎪10 − x + y ≥ 0 ⎪10 + y ≥ x ≥ − 1 ⎪10 1 ⇔ y2 (y + 1) + x 2 (x + 1) + z2 (z + 1) = 6 (4) ⎪3 ⎪3 y ⎪ +y≥x≥− ⎩ ⎩ Vì x ≤ −2,y ≤ −2,z ≤ −2 ⇒ y + 1 < 0,x + 1 < 0,z + 1 < 0 ⎪3 ⎩ y Xeùt 2 tröôøng hôïp: ⇒ y2 (y + 1) + x 2 (x + 1) + z2 (z + 1) < 0 ⇒ (4) khoâng thoûa. . Xeùt y > 0 :⇒ z > 0 vaø x > 0 ⎧ 2 10 ⎧ 2 10 3 2 3 2 . 0 < y < 1:⇒ y + y + y < 3 ⇒ 0 < x < 1 ⇒ x + x + x < 3 ⇒ 0 < z < 1 ⎪ y + y +1≤ 0 ⎪y + 3 y + 1 ≤ 0 ⎪ 3 ⎪ TH 1: y < 0 Heä ⇔ ⎨ ⇔⎨ 2 ⇒ y3 + y2 + x3 + x 2 + z3 + z2 < 6 : (4) khoâng thoûa. 10 ⎪ +y≥x>0 ⎪⎛ 10 + y ⎞ ≥ x 2 = 82 − y2 . y > 1 : ⇒ x = y3 + y2 + y − 2 > 1 ⇒ z > 1 ⎪3 ⎩ ⎪⎜ 3 ⎩⎝ ⎟ ⎠ 9 ⇒ z3 + z2 + x3 + x 2 + y3 + y2 > 6 : (4) khoâng thoûa. ⎧ 2 10 ⎡ 82 1 ⎪y + 3 y + 1 ≤ 0 ⎢ y = −3 ⇒ x = − y2 = * y = 1 : (1) ⇒ x = 1 vaø (3) ⇒ z = 1, (2) ⇒ y = 1 ⎪ 10 9 3 ⇔⎨ ⇔ y2 + y + 1 = 0 ⇔ ⎢ Vaäy heä chæ coù 1 nghieäm laø x = y = z = 1 10 ⎪y2 + y + 1 ≥ 0 3 ⎢ 1 82 ⎪ ⎢y = − ⇒ x = − y2 = 3 ⎩ 3 ⎢ ⎣ 3 9 ⎧ 2 ⎪x + xy = 6 (1) 5.2. ⎨ Laø nghieäm cuûa heä. 2 2 ⎪x + y = 5 (2) ⎩ 6 − x2 (6 − x 2 )2 82 (1) ⇔ y = (x ≠ 0) theá vaøo (2): x 2 + =5 TH 2: y > 0: x 2 = − y2 x x2 9 9 3 2 82 82 100 10 ⇔ 2x 4 − 17x 2 + 36 = 0 ⇔ x 2 = 4, x 2 = ⇔ x = ±2, x = ± + Neáu x ≥ 0 ⇒ x = − y2 < < < +y 2 2 9 9 9 3 2 2 ⇒ y = 1, y = −1, y = , y=− . 2 2 100 101
  4. ⎧ 1 ⎧ 82 ⎪x + y ≥ 0 ⎪ ⎪0 ≤ x < ⎪ 9 ⇒⎨ ⇒⎨ ⎪10 − x + y > 0 ⎪ 82 2 ⎪3 ⎩ ⎪y = 9 − x > 0 ⎩ + Neáu x < 0 82 10 82 1 ⇒x=− − y2 < 0 ⇒ − x + y > 0, ∀y ⇒ − y2 ≤ 9 3 9 y 82 1 ⇔ − y2 ≤ 2 (vì y > 0). 9 y ⎡ y2 ≥ 9 ⎡y ≥ 3 82 2 ⎢ ⇔ y − y +1≥ 0 ⇔ 2 1 ⇔ ⎢ 4 9 ⎢y ≤ ⎢y ≤ 1 ⎢ ⎣ 9 ⎢ ⎣ 3 ⎧ 1 ⎧ 82 2 2 82 ⎪0 < y ≤ 3 ⎪3 ≤ y ≤ 9 (do x + y = 9 ) ⎪ ⎪ Vaäy heä coù nghieäm: ⎨ ∨⎨ ⎪x = − 82 82 − y2 ⎪x = − − y2 ⎪ ⎩ 9 ⎪ ⎩ 9 102
Đồng bộ tài khoản