THIẾT KẾ BỘ ĐIỀU KHIỂN BẰNG MẠNG NƠRON TRUYỀN THẲNG THEO MÔ HÌNH MẪU LÀ MỘT KHÂU DAO ĐỘNG BẬC 2

Chia sẻ: Do Xuan | Ngày: | Loại File: PDF | Số trang:7

1
881
lượt xem
282
download

THIẾT KẾ BỘ ĐIỀU KHIỂN BẰNG MẠNG NƠRON TRUYỀN THẲNG THEO MÔ HÌNH MẪU LÀ MỘT KHÂU DAO ĐỘNG BẬC 2

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Ngày nay, trí tuệ nhân tạo đang phát triển mạnh mẽ nhằm tạo ra cơ sở xây dựng các hệ chuyên gia, hệ trợ giúp quyết định. Trí tuệ nhân tạo được xây dựng trên cơ sở mạng nơron nhân tạo và ứng dụng trong thiết kế hệ thống điều khiển thông minh mà trong đó bộ điều khiển có khả năng tư duy như bộ não của con người đang là xu hướng mới trong điều khiển tự động.

Chủ đề:
Lưu

Nội dung Text: THIẾT KẾ BỘ ĐIỀU KHIỂN BẰNG MẠNG NƠRON TRUYỀN THẲNG THEO MÔ HÌNH MẪU LÀ MỘT KHÂU DAO ĐỘNG BẬC 2

  1. THIẾT KẾ BỘ ĐIỀU KHIỂN BẰNG MẠNG NƠRON TRUYỀN THẲNG THEO MÔ HÌNH MẪU LÀ MỘT KHÂU DAO ĐỘNG BẬC 2 KS. Phạm Ngọc Minh, PGS-TSKH. Phạm Thượng Cát Phòng Công Nghệ Tự Động Hóa - Viện Công Nghệ Thông Tin Viện Khoa Học và Công Nghệ Việt Nam Tel. 84-4-8363484, Fax: 84-4-8363485, E-mail: ptcat@ioit.ncst.ac.vn Tóm tắt : Bài báo này trình bày kết quả nghiên cúu thiết kế bộ điều khiển bằng mạng nơron truyền thẳng được huấn luyện bằng giải thuật học lan truyền ngược lỗi BP và được cài đặt trên thiết bị điều khiển thông minh ĐKTM, một sản phẩm công nghệ cao của phòng Công nghệ Tự động hoá - Viện Công nghệ Thông tin. DESIGN AND IMPLEMENTATION OF A NEURO CONTROLLER USING SECOND ORDER REFERENCE MODEL Dipl.Eng. Pham Ngoc Minh, Prof.DSC. Pham Thuong Cat Department for Automation Technology, Institute of Infomation Technology. Viet Nam Academy of Science and Technology Tel. 84-4-8363484, Fax: 84-4-8363485, E-mail: ptcat@ioit.ncst.ac.vn Abstract: This paper presents research results in design and implementation of a neural controller using Error Back-Propagation Algorithm. This controller has been installed in an intelligent control ĐKTM device, a high-tech product of Department for Automation Technology - Institute of Information Technology. 1. ĐẶT VẤN ĐỀ Ngày nay, trí tuệ nhân tạo đang phát triển mạnh mẽ nhằm tạo ra cơ sở xây dựng các hệ chuyên gia, hệ b trợ giúp quyết định. Trí tuệ nhân tạo được xây dựng trên cơ sở mạng nơron nhân tạo và ứng dụng trong thiết kế hệ thống điều khiển thông minh mà trong đó bộ điều khiển có khả năng tư duy như bộ não Vi Wi của con người đang là xu hướng mới trong điều khiển tự động. x y Mạng nơron là sự tái tạo bằng kỹ thuật những chức Input Output năng của hệ thần kinh con người với vô số các nơron được liên kết truyền thông với nhau trong mạng. Trong bài báo này, chúng tôi sẽ trình bày kết quả ứng dụng mạng nơron trong chế tạo thiết bị điều khiển thông minh. Output Input Hidden Layer 2. MÔ HÌNH MẠNG NƠRON LAN TRUYỀN Layer Layer THẲNG NHIỀU LỚP Hình 1 : Cấu trúc mạng nơron Trong báo cáo này, chúng tôi sử dụng mô hình Trong đó: mạng nơron lan truyền thẳng nhiều lớp áp dụng cho • Các nơron trong mạng là nơron Fermi hệ thống SISO (single-input single-output). Mạng • Input Layer gồm 1 nơron có trọng số bằng 1. nơron nhiều lớp lan truyền thẳng được mô tả như Tín hiệu vào x được đưa tới nơron của Input hình 1 với 3 lớp – Input Layer (lớp vào), Hidden Layer, khi đó tín hiệu ra của nơron là x Layer (lớp ẩn), Output Layer (lớp ra). • Vector trọng số giữa Input Layer và Hidden Layer là Vi . Tín hiệu ra của các nơron Input Layer được đưa vào các nơron của Hidden Layer, khi đó tín hiệu ra được tính theo công thức: Oi = f (Vi * x + b) = f (netVi ) (2.1) trong đó netVi = Vi * x + b 1
  2. 1 df ~ f (netVi ) = − netVi ⇒ = Oi (1 − Oi ) thực y[ k ] . Trên cơ sơ so sánh với mẫu học y[k], 1+ e dnetVi các trọng số Wi[k] được hiệu chỉnh thành Wi[k+1] . • Vector trọng số giữa Hidden Layer và Output Tiếp tục từ Wi[k+1] sẽ hiệu chỉnh các trọng số Layer là Wi .Tín hiệu ra của các nơron Hidden Vi[k] . Layer được đưa vào nơron của Output Layer, khi đó tín hiệu ra y được tính theo công thức: • Với sai lệch cho mẫu học thứ k là ~ 3 y = f ( ∑ ( Wi * Oi )) = f (netY ) = 1 y (k ) − y (k ) , giá trị gia tăng ∆Wi [k ] được i =1 1 + e − netY xác định theo công thức cải biên của Widnow df như sau: ⇒ = y (1 − y ) (2.2) dnetY  ~  df 3 ∆Wi [k ] = s y[k ] − y[k ]   d (netY ) Oi Trong đó netY = ∑ ( Wi * Oi )   netY [ k ] (3.1) i =1 = s.δ Y .Oi Sơ đồ giải thuật tính tín hiệu ra y được mô tả như hình 2  ~  df Trong đó δ Y =  y[k ] − y[k ]   d (netY ) x[k]   netY [ k ] là tín hiệu sai lệch của nơron đầu ra. Tham số s gọi là bước học, i=1 s = 0.1 ÷ 0.9 Có thể xác định Oi theo công thức 2.1. Sau khi tính được ∆Wi [k ] , ta xác định được NetVi = Vi*x[k] + b trọng số mới Wi [k + 1] theo công thức sau: Wi [k + 1] = Wi [k ] + ∆Wi [k ] (3.2) Oi = f (netVi ) • Sau khi đã có Wi [ k + 1] ta xác định giá trị gia = 1 tăng ∆Vi [k ] theo công thức cải biên của − netVi 1+ e Widnow như sau: ∆Vi [k ] == s.δ Vi .x (3.3) i=i+1 df 3 δ Vi = ∑ δ V Wi [k + 1] d (netVi ) netVi [ k ] i =1 No Sau khi tính được ∆Vi [k ] , ta xác định được i>3 trọng số mới Vi [k + 1] theo công thức sau: Yes Vi [k + 1] = Vi [k ] + ∆Vi [k ] (3.4) 3 netY = ∑ (Wi * Oi ) Thuật toán hiệu chỉnh các trọng số sẽ dừng đến khi i =1 sai lệch E < ε cho trước: 2 1  ~  ~ E = ∑  y (k ) − y (k ) < ε (3.5) y[k ] = f (netY ) 2   1 Sơ đồ giải thuật huấn luyện mạng được mô tả trong = hình 3,4. 1 + e − netY Hình 2: Lưu đồ tính tín hiệu ra y của mạng nơron 3. HUẤN LUYỆN MẠNG NƠRON VỚI GIẢI THUẬT HỌC LAN TRUYỀN NGƯỢC LỖI BP Trước khi sử dụng mạng Nơron, ta cần phải dạy học cho mạng với nhiệm vụ xác định các trọng số Vi , Wi .Giải thuật học lan truyền ngược BP được dùng để dạy mạng nhiều lớp. Ta có tập các mẫu học {x[k] , y[k] }. Từ tập mẫu học x[k] và các trọng số Vi[k] , Wi[k] của mạng, ta xác định được đầu ra 2
  3. Start I k=1 i=1 ~ df δ y = ( y[k ] − y[k ])* x[k] y[k] d (netY ) netY [ k ] ∆Wi [k ] = s * δ y * Oi Wi [k + 1] = Wi [k ] + ∆Wi [k ] Create NN ~ df 3 y [k] δ Vi = * ∑ δ yW j [k + 1] d (netVi) netVi[ k ] j =1 ∆Vi [k ] = s * δ Vi * x 2 Vi [k + 1] = Vi [k ] + ∆Vi [k ] 1  ~  E= *  y[k ] − y[k ] 2   i=i+1 Yes E3 No Yes I II Thuật toán lan truyền ngược BP Hình 4: Thuật toán lan truyền ngược BP hiệu hiệu chỉnh các trọng số chỉnh các trọng số Wi[k+1], Vi[k+1] Wi [k + 1] = Wi [k ] + ∆Wi [k ] Vi [k + 1] = Vi [k ] + ∆Vi [k ] 4. XÂY DỰNG BỘ ĐIỀU KHIỂN DÙNG MẠNG NƠRON THEO MÔ HÌNH MẪU LÀ MỘT KHÂU DAO ĐỘNG BẬC 2 II Bài toán đặt ra cần phải thiết kế bộ điều khiển bằng mạng nơron để tín hiệu ra của đối tượng điều khiển bám lấy tín hiệu ra của mô hình mẫu khi đối tượng k=k+1 có tham số không biết trước hoặc bị thay đổi trong quá trình hoạt động. Xét mô hình mẫu là khâu dao động bậc 2: KM WM ( s ) = 2 (4.1) s + a1 s + a 0 Hình 3: Lưu đồ giải thuật huấn luyện mạng nơron với thông số KM , a1 và a2 được chọn phù hợp với các chỉ tiêu chất lượng mong muốn, a1 , a0 có thể ước lượng được. Phương trình vi phân tương ứng là: y M + a1 y M + a 0 y M = K M u (4.2) 3
  4. Mạng nơron trong cấu trúc điều khiển theo vòng kín đóng vai trò bộ điều khiển Start Mô hình mẫu WM(s) YM Up = f(t) EP + - YP Chuyển đổi D/A NN Controller UP Analog Output (điều chỉnh W,b) ĐTĐK SP ĐTĐK Hình 5: Sơ đồ cấu trúc điều khiển mạch kín theo mô hình mẫu WM (s) Analog Input Chuyển đổi A/D Trong đó: - SP : giá trị đặt Setpoint - Yp : tín hiệu ra của đối tượng điều khiển Nhận dạng mô hình ĐTĐK - Ep : sai lệch tín hiệu ra của đối tượng điều bằng mạng nơron theo thuật khiển với tín hiệu ra mẫu Ep = YM – Yp toán lan truyền ngược BP - Up : tín hiệu điều khiển Các bước thiết kế bộ điều khiển dùng mạng Nơron UNN Up Bước 1: Huấn luyện mạng NN Inverse Model ĐTĐK để nhận dạng động học nghịch mô hình đối Ep = 1 2 [ * U p − U NN ]2 tượng điều khiển thực Up Yp No ĐTĐK Ep < ε + Yes Ep - Stop NN Inverse Model ĐTĐK UNN Hình 7: Lưu đồ thuật toán nhận dạng động học nghịch mô hình đối tượng điều khiển Hình 6 : Sơ đồ huấn luyện mạng nơron nhận dạng Bước 2: Sau khi đã có bộ NN Inverse Model ĐTĐK , ta lắp bộ đó vào hệ thống để xác định bộ động học nghịch mô hình đối tượng điều khiển NN Controller sao cho hệ thống giống mô hình mẫu là một khâu dao động bậc 2 Up - tín hiệu thử là một hàm f(t) tạo ra nhiều giá trị mẫu đầu vào để huấn luyện điều chỉnh (W,b) của Mô hình mẫu mạng Nơron sao cho E 2 → min . WM(s) YM p Sai số Ep = Up - UNN được sử dụng để huấn luyện mạng, thông tin về sai số được lan truyền ngược UNN NN Inverse qua mạng nơron để hiệu chỉnh lại (W,b) theo giải Model thuật học lan truyền ngược lỗi BP. ĐTĐK X + NN Controller UP (điều chỉnh W,b) EM - Hình 8: Sơ đồ huấn luyện mạng nơron điều khiển theo mô hình mẫu 4
  5. Sẽ huấn luyện điều chỉnh (W,b) của mạng Nơron 5. MỘT SỐ KẾT QUẢ THỰC NGHIỆM KHI SỬ sao cho 2 EM → min . Tính tín hiệu ra YM của mô DỤNG BỘ ĐIỀU KHIỂN BẰNG MẠNG NƠRON TRÊN THIẾT BỊ ĐKTM hình mẫu WM(s) bằng phương pháp số Runge-Kuta tại các thời điểm t , từ giá trị YM ta cho lan truyền Chúng tôi đã sử dụng thuật điều khiển bằng mạng ngược qua NN Model ĐTĐK được giá trị UNN , nơron trên thiết bị ĐKTM với đối tượng là khâu sai số EM = UNN – UP được sử dụng để luyện mạng. dao động được mô phỏng trên thiết bị mô phỏng Thông tin về sai số được lan truyền ngược qua MPĐT. mạng NN Model ĐTĐK mô phỏng động học nghịch của đối tượng điểu khiển và mạng NN (AI1) Controller để hiệu chỉnh lại (W,b) của mạng. AO1 MPDT Start AI1 (AO1) Setpoint MPDT Hình 10 : Sơ đồ ghép nối 2 thiết bị ĐKTM với MPĐT Hiệu chỉnh các Tín hiệu ra AO1 của thiết bị điều khiển thông minh trọng số Vi , Wi của Tính đầu ra YM là tín hiệu điều khiển và cũng là tín hiệu vào của NN Contronller của mô hình đối tượng, tín hiệu ra của đối tượng AO1 chính là theo thuật toán lan mẫu WM (s) tín hiệu vào của thiết bị điều khiển thông minh. truyền ngược BP Khi thiết bị điều khiển thông minh ở trạng thái Prog, đặt SP =1500, ac1=1, ac0=1, Đối tượng điều khiển được chọn trên thiết bị mô Tính UNN qua phỏng MPĐT là khâu dao động (chọn trong hệ mô hình tuyến tính) có hàm truyền đạt: NN Inverse 0.5 WP (s) = 2 (5.1) Model ĐTĐK s + s +1 Đặt thiết bị điều khiển ở trạng thái RUN, cho phép điều khiển đối tượng ta thu được kết đáp ứng thời gian của đối tượng trên thiết bị mô phỏng MPĐT Up UNN Ep = 1 2 [ * U NN − U p ]2 No Ep < ε Yes Stop Hình 9: Lưu đồ thuật toán huấn luyện mạng nơron điều khiển theo mô hình mẫu Hình 11: Màn hình giao diện thiết bị MPĐT Thuật toán điều khiển dùng mạng nơron trên đã được lập trình và cài đặt vào thiết bị điều khiển Khi chạy ở mode RUN, chương trình sẽ tự động thông minh ĐKTM của phòng Công nghệ Tự động học đối tượng để chỉnh các trọng số của mạng hoá - Viện Công nghệ Thông tin. nơron, sau 30s tín hiệu ra của đối tượng bám được tín hiệu ra của mô hình mẫu, sai số ε ->0 5
  6. Nếu thay đổi hệ số K của khâu dao động trên thiết TÀI LIỆU THAM KHẢO bị mô phỏng MPĐT như K=0.75,K=1, K =2 ta vẫn thu được kết quả tương tự. [1] CHIN-TENG LIN and C.S GEORGE LEE Neural Fuzzy Systems. A Neuro-Fuzzy Synergism to Intelligent Systems, Prentice Hall International, Inc, 1996 [2] SIMON HAYKIN, Neural Networks a Comprehensive Foundation Prentice Hall International, Inc, 1999 [3] BÙI CÔNG CƯỜNG, NGUYỄN DOÃN PHƯỚC Hệ mờ mạng nơron và ứng dụng, Nhà xuất bản khoa học và kỹ thuật, 2002 [4] PHAN XUÂN MINH, NGUYỄN DOÃN PHƯỚC Lý thuyết điều khiển mờ, Quá trình huấn luyện Quá trình điều khiển Nhà xuất bản khoa học và kỹ thuật, 2002 NN Controller đối tượng [5] PHAN MINH TÂN, Hình 12: Đồ thị quá trình điều khiển đối tượng TRẦN VIỆT PHONG, trên thiết bị MPĐT với bộ điều khiển BÙI THANH QUYÊN, mạng nơron cài đặt trên thiết bị ĐKTM PHẠM THƯỢNG CÁT. Báo cáo “Nghiên cứu phát triển thiết bị Quá trình huấn luyện mạng NN Controller trong MPĐT mô phỏng thời gian thực các đối khoảng 22s , sau đó bắt đầu quá trình điều khiển tượng điều khiển”. đối tượng. Tuyển tập Hội nghị khoa học toàn quốc VICA5, Vol.1, pp 259-264. Hà nộI 2002. 6. KẾT LUẬN Phòng Công nghệ Tự động hoá - Viện Công nghệ Thông tin đã nghiên cứu thiết kế bộ điều khiển trên cơ sở mạng nơron nhân tạo cài đặt trong thiết bị ĐKTM với mong muốn tạo ra một thiết bị điều khiển thông minh có khả năng thích nghi với một số ứng dụng thực tế như hệ thống điều khiển lò nhiệt, điều khiển mức nước, điều khiển độ PH …v.v . Kết quả nghiên cứu này chỉ là bước đầu tiếp cận với lĩnh vực ứng dụng trí tuệ nhân tạo trong điều khiển tự động. Trong thời gian tới, chúng tôi sẽ nghiên cứu để nâng cao khả năng thông minh cho thiết bị ĐKTM với một số mô hình mạng nơron và giải thuật học khác. 6
  7. 7

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản