Thuật Toán Và Thuật Giải 23

Chia sẻ: Avsdvvsd Qwdqdad | Ngày: | Loại File: PDF | Số trang:5

0
50
lượt xem
3
download

Thuật Toán Và Thuật Giải 23

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

dụng cùng lúc nhiều kiểu biểu diễn tri thức, mỗi kiểu biểu diễn ứng với một nhiệm vụ con. Nhưng như vậy, chúng ta lại nảy sinh ra vấn đề "dịch" một tri thức từ kiểu biểu diễn này sang kiểu biểu diễn khác. Tuy thế nhưng một số hệ chương trình trí tuệ gần đây vẫn dùng cùng lúc nhiều kiểu biểu diễn dữ liệu khác nhau.

Chủ đề:
Lưu

Nội dung Text: Thuật Toán Và Thuật Giải 23

  1. dụng cùng lúc nhiều kiểu biểu diễn tri thức, mỗi kiểu biểu diễn ứng với một nhiệm vụ con. Nhưng như vậy, chúng ta lại nảy sinh ra vấn đề "dịch" một tri thức từ kiểu biểu diễn này sang kiểu biểu diễn khác. Tuy thế nhưng một số hệ chương trình trí tuệ gần đây vẫn dùng cùng lúc nhiều kiểu biểu diễn dữ liệu khác nhau. Một trong những ví dụ kết hợp nhiều kiểu biểu diễn tri thức mà chúng ta đã từng làm quen là kiểu kết hợp giữa frame và mạng ngữ nghĩa trong việc trợ giúp giải bài toán hình học. Một trong những sự phối hợp tương đối thành công là sự kết hợp giữa luật sinh và frame. Luật sinh không đủ hiệu quả trong nhiều ứng dụng, đặc biệt là trong các tác vụ định nghĩa, mô tả các đối tượng hoặc những mối liên kết tĩnh giữa các đối tượng. Nhưng những yếu điểm này lại chính là ưu điểm của frame. Ngày nay, đã có rất nhiều hệ thống đã tạo ra một kiểu biểu diễn lai giữa luật sinh và frame có được ưu điểm của hai cách biểu diễn. Sự thành công của các hệ thống nổi tiếng như KEE, Level5 Object và Nexpert Object đã minh chứng cho điều này. Frame cung cấp một ngôn ngữ cấu trúc hiệu quả để đặc tả những đối tượng xuất hiện trong các luật. Frame còn đóng vai trò như một lớp hỗ trợ cho thao tác suy diễn cơ bản trên những đối tượng không cần phải tương tác một cách tường minh trong các luật. Khả năng phân lớp của frame còn có thể được dùng để phân hoạch, tạo chỉ mục và sắp xếp các luật sinh trong hệ thống. Khả năng này rất thích hợp cho người dùng trong việc xây dựng và hiểu các luật, cũng như cũng có thể theo dõi được các luật được sử dụng khi nào và cho mục gì. Hình sau cho thấy một kiểu kết hợp giữa luật sinh và frame. Sự kết hợp này đã cho phép tạo ra các luật so mẫu nhằm tăng tốc độ tìm kiếm của hệ thống. Kết quả của sự kết hợp này cho phép tạo ra các biểu diễn phức tạp hơn rất nhiều so với việc chỉ dùng frame, thậm chí phức tạp hơn cả việc lập trình trực tiếp bằng ngôn ngữ C++ !!.
  2. * Suy luận không chắc chắn (Hypothetical reasoning) : là kỹ thuật suy luận dựa trên các điều kiện có thể có mâu thuẫn hoặc không chắc chắn. Ví dụ kết hợp biểu diễn tri thức bằng luật sinh và frame trong bài toán điều chế chất hóa học Vấn đề : Cho trước một số chất hóa học. Hãy xây dựng chuỗi các phản ứng hóa học để điều chế một số chất hóa học khác. Đầu tiên, đây là một ứng dụng hết sức tự nhiên của tri thức biểu diễn dưới dạng luật. Lý do là vì bản thân các phản ứng hóa học tiêu chuẩn đều được thể hiện dưới dạng luật. Chẳng hạn ta có các phương trình phản ứng sau : Na + Cl2 ® NaCl Fe + Cl2 ® FeCl2 Cu + Cl2 ® CuCl2 Cl2 + H2O ® HCl + HClO MnO2 + 4HCl ® MnCl2 + Cl2 + H2O HCl + KMnO4 ® KCl + MnCl2 + H2O + Cl2
  3. NaCl + H2O ® Cl2 + H2 + NaOH ... Như vậy, nếu xem một chất hóa học là một sự kiện và một phương trình phản ứng như là một luật dẫn thì bài toán điều chế chất hóa học, một cách rất tự nhiên, trở thành bài toán suy luận tiến trong cơ sở tri thức dạng luật dẫn. Tuy nhiên, số lượng các phản ứng là rất lớn, nên ta không thể sử dụng các luật dựa trên các phản ứng cụ thể như vậy mà phải sử dụng các phản ứng tổng quát hơn như : Axit + Bazơ ® Muối + Nước Kiềm + Nước ® Xút + H2 (trong hóa học cũng có nhiều phản ứng rất đặc biệt không thể tổng quát được, trong trường hợp này, ta sẽ xem phản ứng đó như là một luật riêng!). Để mô tả được các phản ứng tổng quát như trên, ta sẽ sử dụng các frame. Chẳng hạn để đặc tả Acid Sulfuric H2SO4 ta sử dụng các frame tổng quát sau. Dĩ nhiên là trong các frame ở trên còn rất nhiều thuộc tính hóa học khác. Ở đây chúng tôi chỉ trình bày sơ lược về mặt ý tưởng để bạn đọc có cơ sở bắt đầu. Ý tưởng này đã được một số sinh viên năm 4 của khoa Công Nghệ Thông Tin Đại Học Khoa Học Tự Nhiên TP. Hồ Chí Minh cài đặt thành công. Chương trình chạy tốt trong phạm vi các phản ứng trong sách giáo khoa lớp 10, 11 và 12.
  4. Chương 3 MỞ ĐẦU VỀ QUAN MÁY HỌC I. THẾ NÀO LÀ MÁY HỌC ? II. HỌC BẰNG CÁCH XÂY DỰNG CÂY ĐỊNH DANH II.1. Đâm chồi II.2. Phương án chọn thuộc tính phân hoạch II.2.1. Quinlan II.2.2. Độ đo hỗn loạn II.3. Phát sinh tập luật II.4. Tối ưu tập luật II.4.1. Loại bỏ mệnh đề thừa II.4.2. Xây dựng mệnh đề mặc định I. THẾ NÀO LÀ MÁY HỌC ? Thuật ngữ "học" theo nghĩa thông thường là tiếp thu tri thức để biết cách vận dụng. Ở ngoài đời, quá trì học diễn ra dưới nhiều hình thức khác nhau như học thuộc lòng (học vẹt), học theo kinh nghiệm (học dựa theo trường hợp), học theo kiểu nghe nhìn,... Trên máy tính cũng có nhiều thuật toán học khác nhau. Tuy nhiên, trong phạm vi của giáo trình này, chúng ta chỉ khảo sát phương pháp học dựa theo trường hợp. Theo phương pháp này, hệ thống sẽ được cung cấp một số các trường hợp "mẫu", dựa trên tập mẫu này, hệ thống sẽ tiến hành phân tích và rút ra các quy luật (biểu diễn bằng luật sinh). Sau đó, hệ thống sẽ dựa trên các luật này để "đánh giá" các trường hợp khác (thường không giống như các trường hợp "mẫu"). Ngay cả chỉ với kiểu học này, chúng ta cũng đã có nhiều thuật toán học khác nhau. Một lần nữa, với mục đích giới thiệu, chúng ta chỉ khảo sát một trường hợp đơn giản. Có thể khái quát quá trình học theo trường hợp dưới dạng hình thức như sau : Dữ liệu cung cấp cho hệ thống là một ánh xạ f trong đó ứng một trường hợp p trong tập hợp P với một "lớp" r trong tập R. f : P |® R
  5.  

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản