Tích phân-luyện thi đại học 1999-2009

Chia sẻ: Trần Bá Trung4 | Ngày: | Loại File: PDF | Số trang:12

0
185
lượt xem
93
download

Tích phân-luyện thi đại học 1999-2009

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

"Tích phân-luyện thi đại học 1999-2009 " nhằm giúp các em học sinh có tài liệu ôn tập, luyện tập nhằm nắm vững được những kiến thức, kĩ năng cơ bản, đồng thời vận dụng kiến thức để giải các bài tập toán học một cách thuận lợi và tự kiểm tra đánh giá kết quả học tập của mình

Chủ đề:
Lưu

Nội dung Text: Tích phân-luyện thi đại học 1999-2009

  1. £23
  2. £1 £22 π π π π 2 π π π π 2
  3. £21 £2 π 4 π π π 6 ,
  4. £3 £20 − − 1 π vôù m oï n ng uy eâ i i n 1 0 2.Tính tíc h p ha â : n π 2 1 3 x cosx 2 1) 2 dx 2) I (e x sinx e x x 2 )dx π 4 - sin x -1 2 a x 1.C ho ha ø soá m f(x) bxe (x 1) 3 1 TÌm a va ø b ieá ra è g f’ (0) = b t n 22 va ø f(x) dx 5 0 2 2.Tính tíc h p ha â n I x2 x dx 0 3. Tính tíc h p ha â n x 1 I(x) = dt vôùx > 0. i t(t 1) 1
  5. 5 £19 £4 1 0 1 1 1 2 1 18 1 19 2 S C C C 19 ... C C x4 x 1 2 19 3 19 4 20 19 21 19 11. dx 1 0 x2 4 2.a )Tính tíc h p ha â : In n x 2 (1 x 3 ) n dx 0 b )C höù g m inh ra è g n n 1 0 1 1 1 2 1 3 1 2 n 1 -1 Tính tíc h p ha â : n Cn Cn Cn C n ... Cn n 7 3 6 9 12 3n 3 3(n 1) 3 4 2 x 1 dx x 1 a. dx b. c. dx 3 3 0 3x 1 7 x x2 9 0 3x 2 1 1 3 3 (x 2 x)dx dx x5 2x 3 d. e. f. dx − 0 x2 1 0 (2x 2 1) x 2 1 0 x2 1 1 xdx 1.Tính c a ù tíc h p ha â : c n g. 3 1 0 x 1 x (1 e x ) 2 1) J 2 - 4 dx 2) dx 0 0 e3 2 Tính c a ù tíc h p ha â : c n 2.Tính tíc h p ha â : n max[f(x), g (x)]dx 4 3 0 a . 1) x3 2x 2 xdx 2) x3 2x 2 xdx 2 trong ñ où f(x) = x : va øg (x) = 3x 2 . 0 0 2π a 2 3.C ho f(x) = Asin2x + B . Tính A, B ñ eå f (0) 4, f(x)dx 3. b . 1) x2 a 2 x 2 dx (a la øha è g soá d öông ) n 0 0 − 1 2) (1 x 2 ) 3 dx 4 0 1.Tính tíc h p ha â : n x x - m dx tuy ø o m . the 2 0 dx dx c . 1) 2) 2 (2x 1) 2 dx x2 x 1 1 x 1 x2 2.Tính tíc h p ha â : n . x 1 1 1 5 3 1. x 1 x dx 2. x 3 . 1 x 2 dx 0 0 C höù g m inh ra è g neá f(x) la øha ø lieâ tuï vôù m oï g ia ù trò c uû n n u m n c i i a 10 dx x va øtua à hoa ø vôù c hu ky øT thì : n n i 3. : 2 5x 1
  6. 6 £5 £18 π 2.C ho tíc h p ha â : n In 2 cos n xdx 0 9 1 3 3 vôù n la øsoá ng uy eâ d öông . i n 1. x 1 xdx 2. x . 1 x2 dx 1) Tính I3 va øI4 . 1 0 2) Thieá la ä heä thöù g iöõ In va øn-2 vôù n > 2 . Töøñ où tính I11 va ø t p c a I i 1 2 3 I12 . 3. x x2 1.dx 4. x 2 x dx 2nx 1 e 0 3.C ho In dx 1 3 01 e 2x 5 5. x 1 x .dx 6. x2 1.x dx vôù n = 0,1,2,3,… i 0 0 1) Tính Io . 2 10 2) Tính In + In+1 . x dx 7. dx 8. 1 1 x 1 5 x 2 x 1 2 3 7 dx x 2 9. 10. dx − 3 x x2 1 5 4 0 x 1 2 3 1.Tính tíc h p ha â : n I x(1- x 2 ) n dx ( n N* ) x4 x 3 0 11. dx 12. dx 0 x5 1 -1 3 x 1 x 3 Töøñ où c höù g m inh ra è g : n n 7 1 0 1 1 1 2 1 3 ( 1) n 1 3 3 Cn Cn Cn C n ... Cn n x5 2x3 x 1 2 4 6 8 2(n 1) 2((n 1) 13. dx 14. dx 3 2.Tính tíc h p ha â : n 0 x2 1 0 3x 1 1 1 xdx I (1 x) n dx ( n N* ) 15. dx 0 0 2x 1 Töøñ où c höù g m inh ra è g : n n C Ñ Ng u y eã ta á Tha ø h na ê 2007 n t n m 1 1 1 2 1 2 n 1 -1 2 1 1 Cn C n ... Cn n x x 1 dx 2 3 n 1 n 1 16. dx 17. x 5 1 1 3x 3.C ho n la øm oä soá ng uy eâ d öông . t n 1 5 1 6 dx a )Tính tíc h p ha â : I n (1 x) n dx 18. 2x 1 4x 1 0 2 0 1 1 1 2 1 b )Tính toå g : S n Cn Cn C n ... Cn n 2 3 n 1 1 ln2 1.Tính tíc h p ha â : I n x(1- x)19 dx 4 dx x 0 a) b) dx 0 e x 1 1 2x Ruù g oï toå g : t n n
  7. 7 £17 £6 4.C höù g m inh ra è g vôù m oï n ng y eâ d öông ta c où n n i i n : 1 ln2 2x 1 2 e 1 (2x - 1) 2n 1e x- x dx 0 1) dx 2) dx x 2x 0 0 e 1 0 e 3 1 m ! n! 4.a )C höù g m inh ra è g : Im, n n n x m (1 - x) n dx π 6 6 (m n 1)! sin x cos x 1 dx 0 4 1. π x dx 2. x vôù m oï m ,n = 0,1,2,3,… i i 6 1 01 2 4 ( Ky ù hieä m ! = 1.2.3… va øq uy öôù 0 ! = 1 ) . u m c b )Gia û söû ra è g m + n = 10 . Hoû vôù m ,n na ø thì Im ,n ñ a ï n i i o t g ia ù trò lôù nha á , b eù nha á ? Ta ï sa o ? n t t i 1 ln5 ln2 5.Tính tíc h p ha â : n In (1 - x 2 ) n dx (n N) dx e 2x 1. 2. dx 0 x 2e x ln3 e 3 0 ex 2 a )Tìm heä thöù g iöõ In va øIn c a 1 ( vôù n i 1). b )Tính In the o n . ln 8 ln5 6.Tính tíc h p ha â : n 2x e 2xdx 3. ex 1.e dx 4. 1 1 ln3 ln2 ex 1 In x 2 (1 - x 2 ) n dx , Jn x(1- x 2 ) n dx ( n 0,1,2,3,.. .) ln3 0 0 e xdx 5. 1 1)Tính Jn va øc höù g m inh b a á ñ a ú g thöù : In n t n c 0 (e x 1) 3 2(n 1) vôù m oï n = 0,1,2, … i i In 1 2)Tính In+1 theo In va øtìm : lim n In 1 dx 7.Tính tíc h p ha â : n ( n 1,2,3,...) n n 0 (1 x ) 1 x n e e e lnx 3 1 ln 2 x) 2 lnx lnx π sin2mx a) dx b) dx c) dx 1.C ho tíc h p ha â : n Im dx x 2x x 1 1 1 0 3 2cos2x (m la øtha m soá ) e 2 C höù g m inh ra è g : n n 1 ln x dx Im + Im -2 = 3Im -1 1 x vôù m oï m i i 2.
  8. 8 £7 £16 2) Töøc a ù keá q ua û treâ , ha õ tính c a ù g ia ù trò c uû I , J va ø c t n y c a : π π 5π (1 sinx)1 cosx 4 ln (1 3 cos2xdx 1. 2 ln dx 2. tgx)dx : K 3π 0 1 cosx 0 2 cosx 3sinx 2.Tính tíc h p ha â : n π π e e cosx 8 cos2x 1 3lnx lnx 3 2lnx 1) dx 2) dx 1. dx 2. dx sinx cosx 0 sin2x cos2x x x 1 2lnx 1 1 π 5c osx 4sinx π 3) 2 dx : e3 3 0 3 ln 2x ln (tgx) (c osx sinx) 3. dx 4. dx x lnx 1 sin2x 1 π 4 e Tính c a ù tíc h p ha â c n dx 5. 3 π π 1 x 1 lnx 2 2 C Ñ Xa â d öï g soá na ê 2007 y n 2 m sin2004 x 3x dx 13. e sin5xdx 0 sin2004 x cos 2004 x 0 − 1.C ho 2 soá ng uy eâ d öông p va øq . Tính : n 2π I cospx.cosq xdx 1 0 1.Tính tíc h p ha â : n In x n e -2x dx n 1,2,3,... trong tröôø g hôï p = q va øp n p q . 0 2.C ho ha ø soá : g(x) sinx sin2x sin3x m 1)C höù g m inh : In n In+1 . Tính In+1 theo In . a )Tìm hoï ng uy eâ ha ø c uû g (x) . n m a 1 2)C höù g m inh : 0 n In vôù m oï n i i 2. π 2(n 1) 2 g(x) Töøñ où tìm lim In b )Tính tíc h p ha â : I n dx n x π e 1 1 2 e -nx 2.C ho : In dx 3.Tính tíc h p ha â : n 0 1 e -x π π/3 4 1) Tính I1 . cosx sinx 2 2) Vôù n > 1 ha õ tìm c oâ g thöù b ieå d ieã In q ua In-1 . i y n c u n a) dx b) tg xdx 3 sin2x 1 π/4 0 3.C ho tíc h p ha â : n I(t) (xsinx) 2 dx . π/2 π/4 sinx 7cosx 6 dx 0 c) dx d) 4 4sinx 3cosx 5 cos x a ) Tính tíc h p ha â khi t = . n 0 0 b ) C höù g m inh ra è g I(t) + I( t) = 0 ( n n t R) .
  9. 9 £15 £8 4π 3 π/2 π2 0 dx dx 2x 3 e) f) 5. xsin x dx 6. x(e x 1) dx x 1 sin2x π sin 0 0 -1 2 π π/2 π e 2 3 x3 1 g) sin2x(1 sin2 x) 3 dx h) sinxcosx(1 cosx) 2 dx 7. (x cos x) sinxdx 8. lnxdx x 0 0 0 1 π π π π/2 3 3 2 e 2 4sin x dx dx x2 1 cosx i) dx j) 4 k) 9. lnxdx 10. e sin 2xdx 1 cosx π sin xcosx 1 cosx x 0 0 1 0 6 π/2 sinxcosx 8.Tính tíc h p ha â : n I dx 0 a cos 2 x b 2 sin2 x 2 vôù a i 0,b 0 va øa 2 b2 . − 1.C höù g m inh ra è g vôù ha i soá töï nhieâ m , n kha ù nha u n n i n c π π cosmx.cosn xdx sinmx.sinn xdx 0 π -π -π 1.Tính tíc h p ha â : n I e 2x cosxdx 2.Tính c a ù tíc h p ha â : c n π π/2 0 2.1) C ho ha ø soá f lieâ tuï treâ m n c n 0,1 .C höù g m inh : n a. 1) cos 2 x sin2 xdx 2) cos 3 xdx π/2 π/2 0 π/6 π/4 π f(sinx)dx f(cosx)dx 0 0 3) sin4 xdx 4) cos 4 xdx 0 0 2) Söû d uï g keá q ua û treâ ñ eå tính : n t n π/2 π/2 π/2 cos 3 xdx sin3 xdx 5) (cos 10 x sin10 x - cos 4 x.sin4 x)dx I dx J dx sinx cosx sinx cosx 0 0 0 π 6) cos 3 xcos5xdx π 2 π 2 6 sin xdx 6 cos xdx 0 1. Ña ë : I t , J π 0 0 π sinx 3cosx sinx 3cosx 3 4 1) Tính I 3J va øI + J . sinx cosx 1 sin2x b. 1) dx 2) dx π sinx cosx 0 cos 2 x 4
  10. 10 £9 £14 π 3 π π 3) tg 2 x cotg 2 x 2dx 2 4 π 2. (x 1) sin 2xdx 3. (x 1) cosxdx 6 0 0 π π π π π 4 3 3 dx dx 4 4 c . 1) 2) tg 4 xdx 3) x x 1 tgx π 4. dx 5. dx 0 π π sinxsin x cos 2x 1 cos2x 4 6 6 0 0 π π π 4 3 2 π dx sin2 x 1 sinx x 2 1 d . 1) 2) dx 3) e dx 2 - cos 2 x cos 6 x 1 cosx 2 2x 0 π 0 6. (2x 1) cos x dx 7. (x 2) e dx 4 0 0 π π π 2 2 4 x cosx sinx sinx e. dx 8. (e cosx)cosxd x 9. (tgx e cosx) dx 2 π 4 - sin x 0 0 2 π π 2 3 4 dx 1. sin xdx 2. 0 0 2 (sinx 2cosx) 1 3 x x.arctgxdx π 3 π 5 - 4x tg x sin4x -1 0 3. 6 dx 4. 4 6 6 dx 0 cos2x 0 sin x cos x π π 3 4 1 2 4cos x 4 1 5. 4 dx 6. dx ln 2x 1 3 x2 0 cos x 0 1 sinx 1. dx 2. x e dx 2π π dx 0 (2x 1) 3 0 7. 1 sinxdx 8. 4 2 5 5 x2 0 0 4sin x 3 π 3. x e dx 2π 2( 0 9. 1 cos2x dx 10. cosx sinx)dx 0 0 π2 π 9 11.a ) Tính tíc h p ha â : n 2 cos 2 x sin2xdx 4. sin xdx 0 0 b ) C höù g m inh ra è g : n n π π C Ñ GTVT III na ê hoï 2007 m c 2 6 2 5 cos x cos6xdx cos x sinx sin6xdx 0 0
  11. 11 £13 £10 2 e π ln (1 x) ln x 10. dx 11. dx va øtính : 2 cos 5 x cos7xdx x2 x 0 1 1 2 12.Tìm hoï ng uy eâ ha ø : n m ln x π π 12. dx I tg x cotg x dx 1 x3 3 6 Ñeà ÑH-C Ñ khoáD na ê 2008 thi i m π π 4 4 2 8 1. sin xtgxdx 2. ( 1 tg x)dx 0 0 π π 2 4 2 3 4 4 3. sin 2x(1 sin x) dx 4. (cos x sin x) dx 1 0 0 a. xe x dx b. (2x 2 x 1)e x dx π π 0 4 2 π2 π sin 2xcosx 1 2 sin2 x 5. dx 6. dx c. sin xdx d. x 2 sinxdx 0 1 cosx 0 1 sin 2x 0 0 π π π 4 2 cos2x 4sin3x e. xcos 4 xsin3 xdx 7. dx 8. dx 1 sin 2x 1 cosx 0 0 0 π π π 2 2 π/4 sin3x cosx 3 9. dx 10. dx 1) xcosxdx 2) xtg xdx2 2cos3x 1 5 2sinx 0 0 0 0 π π 2 2 sin 2x sinx 1 11. dx 12. dx sin x)2 cos2x cosx 2 (e x x 2 sinx e x )dx 0 (2 π 3 -1 C Ñ Ta øc hính – Ha ûq ua n na ê 2007 i i m π π π 2 2 2 cosxdx cos2x 13. dx 14. dx 1. x sin 2xdx 0 7 5sinx cos 2x 0 (sin x cosx 3) 3 0 π π C Ñ Kinh teá .HC M na ê 2007 Tp m 2 2 6 5 sin 2x 15. 1 cos 3x sinxcos xdx 16. dx 0 0 cos 2x 4sin2x
  12. 12 £11 £12 π π 2 2 sin 2x sinx sinx cosx 17. dx 18. dx e e 1 3cosx 1 sin 2x 2 0 π 1. xlnxdx 2. x lnxdx 4 1 1 π 6 tg 4 x 10 π 19. dx 2 3 xsinx cos2x 3. xlg xdx 4. π dx 0 1 3 cos 2 x Ñeà ÑH-C Ñ khoáA na ê 2008 thi i m 3 π π π π2 4 sin x dx 5. sin xdx 6. 2 sin3 xdx 4 0 0 20. sin 2x 2(1 sinx cosx) 7.C ho ha ø soá f(x) = a x+b vôù a 2 + b 2 > 0 . C höù g m inh ra è g : m i n n 0 2 2 π π Ñeà ÑH-C Ñ khoáB na ê 2008 thi i m 3 3 f(x)sinxdx f(x)cosxdx 0 0 0 2 e 2 1. (x 2)lnxdx 2. x lnxdx 1 1 3 1 2 2 3. ln (x x)dx 4. xln (1 x ) dx 2 0 − 2 2 5. (4x 1)lnxdx 6, (2x 7)ln(x 1) dx 2 e 1 0 lnx 3 a. xlnxdx b. dx 2 1 1 (1 x) 2 7. xln (x 5) dx e 0 π π e 2 2 3 2 8. x ln xdx c. cosxln(1 cosx) dx d. cosxln( x x 2 1 ) dx 1 0 π 2 Ñeà ÑH-C Ñ khoáD na ê 2007 thi i m e ln x 9. dx 1 x3 2 ln(x 1) Ñeà ÑH Sa øg oø khoáD, M na ê 2007 thi i n i m 2 dx 1 x

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản