Tiết1- 2 : ĐỊNH NGHĨA VÀ Ý NGHĨA CỦA ĐẠO HÀM

Chia sẻ: Abcdef_43 Abcdef_43 | Ngày: | Loại File: PDF | Số trang:8

0
105
lượt xem
29
download

Tiết1- 2 : ĐỊNH NGHĨA VÀ Ý NGHĨA CỦA ĐẠO HÀM

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Qua tiết dạy này nhằm giúp cho học sinh nắm:  Kiến Thức: - Hiểu rõ định nghĩa đạo hàm của hàm số tại một điểm ,lưu ý đạo hàm của hàm số tại một điểm là một số xác định - Nắm vững ý nghĩa hình học của đạo hàm(hai chú ý:hệ số góc của tiếp tuyến và phương trình tiếp tuyến)

Chủ đề:
Lưu

Nội dung Text: Tiết1- 2 : ĐỊNH NGHĨA VÀ Ý NGHĨA CỦA ĐẠO HÀM

  1. Tiết1- 2 : ĐỊNH NGHĨA VÀ Ý NGHĨA CỦA ĐẠO HÀM I. MỤC ĐÍCH: Qua tiết dạy này nhằm giúp cho học sinh nắm:  Kiến Thức: - Hiểu rõ định nghĩa đạo hàm của hàm số tại một điểm ,lưu ý đạo hàm của hàm số tại một điểm là một số xác định - Nắm vững ý nghĩa hình học của đạo hàm(hai chú ý:hệ số góc của tiếp tuyến và phương trình tiếp tuyến) y - Tính được đạo hàm bằng định nghĩa dựa vào công thức f/ (x0) = lim và bước đầu vận x x  0 dụng được ý nghĩa đạo hàm để viết phương trình tiếp tuyến  Kỹ năng: - Rèn luyện kĩ năng tính đạo hàm tại một điểm - Rèn luyện cho học sinh kĩ năng viết phương trình tiếp tuyến của hàm số tại điểm M(x0,y0) với đồ thị (C ) của hàm số y = f(x)  Tư duy: - Rèn luyện cho học sinh tư duy lô gic - Cho học sinh bước đầu thấy được tác dụng của đạo hàm vào thực tế  Thái độ: - Cẩn thận trong lời giải ,chính xác trong tính toán và lập luận ngắn gọn
  2. - Thái độ vui vẽ trong việc học nhóm,tích cực xây dựng bài II. PHƯƠNG PHÁP: - Gợi mở vấn đáp - Chia nhóm nhỏ học tập - Phân bậc hoạt động các nội dung học tập theo bảng III. PHƯƠNG TIỆN DẠY HỌC: - Chuẩn bị các hình vẽ - Chuẩn bị máy chiếu - Phần mềm sketchpad IV. TIẾN TRÌNH BÀY DẠY:  Tình huống 1: Kiểm tra lại các kiến thức của học sinh thông qua HĐ cho học sinh trả lời câu hỏi + Hoạt động 1: Tìm hiểu nhiệm vụ của học sinh + Hoạt động 2: Học sinh tìm hiểu nhiệm vụ của mình thông qua các câu hỏi của giáo viên  Tình huống 2: Cho học sinh tiếp cận nội dung kiến thức mới thông qua các ví dụ trong thực tế bằng cách tham khảo và tìm hiểu các tình huống trong sách giáo khoa
  3. + Hoạt động 1: Tìm hiểu khả năng lĩnh hội câu hỏi, cũng như nhiệm vụ của học sinh + Hoạt động 2: Học sinh lĩnh hội câu hỏi và có thể tự giải quyết công việc thông qua sự dẫn dắt của giáo viên - Giáo viên: Trình chiếu nội dung câu hỏi lên máy - Học sinh: Trả lời câu hỏi theo yêu cầu của giáo viên Hoạt động giáo viên và học sinh Ghi bảng 1. Bài mới: 1. Ví dụ mở đầu : (sgk) Lưu ý : HĐ1 Giới thiệu nêu nội dung bài toán và dùng hình vẽ minh họa sự chuyển động của f (t1 )  f (t0 ) là vận tốc trung bìnhcủa viên bi t1  t0 chuyển động Lưu ý : f (t1 )  f (t0 ) -Vận tốc trung bình  v  t0   lim là vận tốc tức thời t1  t0 t t 1 0 của chuyển động tại t0 -Vận tốc tức thời y f ( x)  f ( x0 )  lim = x x  x0 xx 0 Trong đó f(x) là hàm số của đối số x f ( x)  f ( x0 ) thường gặp trong các bài lim 2.Đạo hàm của hàm số tại một điểm x  x0 x  x0 toán vật lí ; hoá học; … a. Khái niệm đạo hàm của hàm số tại một điểm
  4. f ( x )  f ( x0 ) f /  x0   lim x x0 x  x0 HĐ2 Giới thiệu định nghìa đạo hàm gọi là đạo hàm của hàm số y = f(x) tại x0 Lưu ý : (sgk) - Gv giới thiệu khái niệm đạo hàm của hàm  x = x - x0 số gia của đối số số tại một điểm  y = f(x) - f(x0) số gia của hàm số f ( x0  x)  f ( x0 ) f / ( x0 )  lim x x  0 b.Cách tính đạo hàm bằng định nghĩa Tính y = f(x0 + x) – f(x0) y Tính f / ( x0 )  x  0 lim  Ví dụ : Tính đạo hàm của hàm số y = x2 tại điểm x0 = 2 y f / ( x0 )  lim = lim  4  x  = 4 - Gv giới thiệu cách tính đạo hàm bằng định x x 0 x  0 nghìa 3.Ý nghĩa hình học của đạo hàm a.Tiếp tuyến của đường cong phẳng - Hs vận dụng cách tính đạo hàm bằng định
  5. nghìa dể giải các ví dụ (C ) M HĐ3 Giới thiệu ý nghĩa hình học của đạo hàm M0 - Gv dùng hìmh vẽ giới thiệu cát tuyến và  f '(x0) là hệ số góc của tiếp tuyến của đồ tiếp tuyến của đường cong phẳng thị hàm số y = f(x) tại điểm M(x0,f(x0))  y = f '(x0)(x - x0 ) + y0 là phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M(x0,f(x0)) Ví dụ : Viết phương trình tiếp tuyến của parabol: y = -x² + 3x -2 tại điểm có hoành độ x0 = 2 Lưu ý : 4.Ý nghĩa cơ học của đạo hàm - Hệ số góc của tiếp tuyến f '(x0)
  6. - Phương trình tiếp tuyến y = f '(x0)(x - x0 ) + Cho chuyển động s = s(t) thì : y0 f (t1 )  f (t0 ) v  t0   s /  t0   lim là vận tốc t1  t0 t1 t0 tức thời tại thời điểm t0 - Hs vận dụng phương trình tiếp tuyến đạo Ví dụ : H3 hàm để giải các ví dụ 5. Đạo hàm của hàm số trên một khoảng : a. Định nghĩa : (sgk) HĐ4 Giới thiệu ý nghĩa cơ học của đạo Ví dụ : H4 hàm b. Đạo hàm của một số hàm số thường gặ :  Đạo hàm hàm số không đổi bằng 0 - Hs vận dụng công thức đạo hàm của một số ( C )/ = 0 hàm số thường gặp để giải H3  Đạo hàm hàm số y = x bằng 1 ; x  R ( x )/ = 1 1  Đạo hàm y = x bằng ; x  0 2x 1 ( x )/ = 2x  Đạo hàm hàm số y = xn ( n  2 ; n  N HĐ4 Giới thiệu đạo hàm của hàm số trên ) bằng nxn - 1 ; x  R một khoảng :
  7. (xn)/ = nxn - 1 ; x  R - Đạo hàm của một số hàm số thường gặp Ví dụ : H5 6. Luyện tập :  Gỉai bài tập tại lớp : Bài 2/192sgk ; Bài 5/192sgk; Bài 6/192sgk - Hs vận dụng công thức đạo hàm của một số hàm số thường gặp để giải H5 Hướng dẫn bài tập về nhà : bài 7; 9/192sgk HĐ 4 Củng cố dặn dò : Củng cố - Củng cố nội dung lý thuyết bài học -Vận dụng lý thuyết giải các bài tập sgk Dặn dò : - Nắm định nghĩa đạo hàm - ý nghìa của đạo hàm - Nắm công thức tính đạo hàm bằng định nghìa - Giải các bài tập 3 ; 4; 6 ; 7 trang 12 sgk

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản