Toán 12 ôn tập hệ thống phương trình mũ - lôgarit

Chia sẻ: tuankl050283

Tài liệu ôn tập môn toán 12 chuyên đề phương trình mũ - phương trình logarit dành cho học sinh hệ trung học phổ thông ôn thi tốt nghiệp, ôn thi đại học - cao đẳng tham khảo ôn tập và củng cố kiến thức.

Bạn đang xem 7 trang mẫu tài liệu này, vui lòng download file gốc để xem toàn bộ.

Nội dung Text: Toán 12 ôn tập hệ thống phương trình mũ - lôgarit

Toán 12 Ôn t p h th ng phương trình mũ-lôgarit

CHUYÊN : PHƯƠNG TRÌNH MŨ-PHƯƠNG TRÌNH LÔGARIT
I. PHƯƠNG TRÌNH MŨ
Kieán thöùc c n nh
1 – Các tính ch t c a lũy th a.
1 am
1.1 a0 = 1, a1 = a, a− n = n ( a ≠ 0 ) 1.2 am .an = am + n , = am − n
a a n

n
n m n n an  a 
1.3 (a ) = ( am ) = am.n 1.4 an bn = ( a.b ) , n = 
b b
m
1.5 a n = n am
2 –Các tính ch t c a hàm s mũ.
Cho hàm s y = ax ( 0 < a ≠ 1)
2.1 T p xác nh D = R.
2.2 T p giá tr : T = (0; +∞).
2.3 Hàm s y = ax ng bi n khi a > 1 và ngh ch bi n khi 0 < a < 1.
2.4 a x = at ⇔ x = t
a > 1 0 < a < 1
2.5  x ⇒x>t ;  x ⇒x at  a > at
Lý thuy t.
Phương trình mũ ơn gi n nh t có d ng.
(1) af (x) = ag(x) ⇔ f(x) = g(x) ( 0 < a ≠ 1)
(2) af (x) = b ⇔ f(x) = loga b ( 0 < a ≠ 1, b > 0 )
M t s Phương pháp gi i các phương trình mũ cơ b n:
1. Phương pháp ưa (bi n i) v cùng m t cơ s
D ng 1.1: Bi n i v d ng : af (x) = ag(x)
x
ax x ax  a  1
Lưu ý các công th c: a .a = a x y x+y
, y = ax − y , ax bx = ( a.b ) , x =   , a0 = 1, a1 = a, a− x = x (a ≠ 0)
a b b a
Bài t p: Gi i các phương trình sau:
x2 − 2x x
x2 + 3x 1 2
1) 2 = 16 2)   =1 3) 3 .5 = 225
x 2
4) 10x − x −2
=1
 5
x −3 x
x 2 − 7 x +12 1  1  2 2 1 4
5)2 =1 6)5  x
=  7)2 x.5 x −1 = 0, 2.102− x 8)2 x −6.3x −6
=  5  . ( 6 x −1 )
5  125  6 
x x −1
9  8  lg 9
9)   .  = 10)5 x −1 = 10 x.2− x.5 x +1
4  27  lg 27
2 1 x +5 x +17 x 4 x−2
x− + x− 4
11)5 x 2
= 5 5 12)32 x − 7 = 0, 25.128 x −3 12) 5 x +2
. ( 0, 2 ) x +2 = 125. ( 0, 04 ) x − 4




-1- Gv: Nguy n Phan Anh Hùng-THPT Hương Giang
Toán 12 Ôn t p h th ng phương trình mũ-lôgarit
1
13)45+ 2cos x − 7.41+ cos x − 4 = 0 2
14)4 x.5 x+1 = 5.202− x
2x − 7
1 1
1
1 6
15) 2 x 4 x. ( 0.125 ) = 4. 3 2 x 16)   .4 x = 8 6x
2

D ng 1.2 Bi n i v d ng : af (x) = b ⇔ f(x) = loga b ( 0 < a ≠ 1, b > 0 )
Bài t p : Gi i các phương trình sau.
x+4 2( x +1)
1)5.4 x +1 − 22 x−3 − 16 2
=3 2) ( 2) − 3.2 x −1 = 7
2x
3)23 x.3x − 33 x −1.3x −1 = 192 4)32 x−3 − 9 x −1 + 27 3 = 675

D ng 1.3 Bi n i v d ng: m.a f ( x ) = n.b g ( x ) ( m, n ∈ R )
f ( x) f ( x)
a n a n
Sau ó ưa v d ng g ( x)
= ⇔  =
b m b m
Lưu ý nh n d ng: Lo i này có hai cơ s khác nhau. Hãy chuy n các s h ng ch a lũy th a v i cơ s b ng
nhau v cùng m t v , sau ó bi n i cho s mũ c a các lũy th a ó b ng nhau ,gi i như d ng 1,2.

Bài t p: Gi i các phương trình sau.
1)3x + 4 − 5 x +3 = 3x − 3x + 2 2)7.3x +1 − 5 x + 2 = 3x + 4 − 5 x +3 3)22lg 4 x −1 − 3.4lg 4 x = 7 lg 4 x −1 − 3.4lg 4 x
1 1 2 2 2 2
4)3.4 x + .9 x + 2 = 6.4 x +1 − .9 x +1 5)2 x −1 − 3x = 3x −1 − 2 x + 2 6)9 x − 2 x + 0,5 = 2 x +3,5 − 32 x −1
3 4
D ng 1.4 Bi n i v phương trình tích.

Bài t p : Gi i các phương trình sau.
1)52 x = 33 x + 2.5x + 2.3x 2) x 2 .22 x + 8 = 2 x 2 + 2 x + 2
3) x 2 .6− x + 6 x +2
= x 2 .6 x
+ 62− x 4)8 − x.2 x + 23− x − x = 0
5)3x + 3.2x = 24 + 6 6)12.3x + 3.15x – 5x + 1 = 20

2.Phương pháp t n ph ( ưa v phương trình i s b c2,3 theo n ph )
D ng 1.Bi n i phương trình v d ng m.a 2 f ( x ) + n.x f ( x ) + p = 0 (1)
Lưu ý: Khi gi i c n chú ý n i u ki n xác nh c a (1)
Bư c 1: t t=a f ( x ) ,t>0. Ta có t 2 =(a f ( x ) ) 2 =a 2 f ( x )
mt 2 + nt + p = 0 (*)
PT ã cho tr thành: 
t > 0
Bư c 2: Gi i (*) tìm nghi m t>0
Bư c 3: V i t tìm ư c, gi i phương trình a f ( x ) =t tìm x
Bư c 4: K t lu n (nghi m c a (1))

Bài t p: Gi i phương trình sau.
x x
2 2
−1 −3
1)32 x +5 = 3x + 2 2)9 x − 36.3x +3= 0 3)2.2 2 − 7.2 4 = 20



-2- Gv: Nguy n Phan Anh Hùng-THPT Hương Giang
Toán 12 Ôn t p h th ng phương trình mũ-lôgarit
1 3 1 3 x +3
3+
x +1
4)27 − 13.9 + 13.3
x x
− 27 = 0 5)64 − 2 x x
+ 12 = 0 6)8 − 2 x 2
+ 12 = 0
x x −10
7) ( 3) + ( 3)
5 10
= 84 8)34 x +8 − 4.32 x +5 + 28 = 2 log 2 2

9)32 x +1 = 3x + 2 + 1 − 6.3x + 32( x +1) 10)4x + 1 -5x +2 = 5x– 4x
11)2x + 2x + 1 + 2x + 2 = 3x + 3x + 2 + 3x +4 12)4x +2 + 11.22x = 2.3x +3 + 10.3x
D ng 2.Bi n i phương trình v d ng m.a f ( x ) + n.x − f ( x ) + p = 0 (2)
Phương pháp:
Lưu ý: Khi gi i c n chú ý n i u ki n xác nh c a (2)
1 1
Bư c 1: t t=a f ( x ) ,t>0. Ta có a − f ( x ) = f ( x ) =
a t
 1
mt + n + p = 0 (*) mt 2 + pt + n = 0 (*)
PT ã cho tr thành:  t ⇔
t > 0 t > 0

Bư c 2: Gi i (*) tìm nghi m t>0
Bư c 3: V i t tìm ư c, gi i phương trình a f ( x ) =t tìm x
Bư c 4: K t lu n (nghi m c a (2))

Bài t p: Gi i phương trình sau.
1)3 x +1 + 18.3− x = 29 2) 22+ x − 22− x = 15 3) 5 x −1 + 5.0, 2 x − 2 = 26
x x x x
2
3)2sin x − 22− x = 15 4) ( 5 + 24 ) ( + 5 − 24 ) = 10 5) ( 7 + 48 ) ( + 7 − 48 ) = 14
2 x + 10 9 2 2 x x
6)
4
= x − 2 7)101+ x − 101− x = 99
2
(
8) 3 + 5 ) + 16 3 − 5 ( ) = 2 x +3
x x
9) ( ) (
5 −1 + 5 +1 ) =2 x+ 2
(
10) 5 − 21 + 7 5 + 21 )
x
( )
x
= 2 x+3

x x x x
(
11) 7 − 4 3 ) −3 2− 3 ( ) +2=0 ( ) ( ) = 14
12) 2 + 3 + 2− 3
x x tan x tan x
(
13) 4 + 15 ) + (4 − 15 ) = 62 14) ( 3 + 2 2 ) + ( 3 − 2 2 ) =6
2f x f ( x) 2f x
D ng 3: Bi n i v d ng m.a ( ) + n. ( a.b ) + p.b ( ) = 0 . (m, n, p là các s th c) (1)
Phương pháp:
Trư c khi gi i c n lưu ý “ i u ki n xác nh” c a (1).
Bư c 1: Chia c hai v c a pt (1) cho b 2 f ( x ) (ho c a 2 f ( x ) ) ta ư c:
2 f (x) f (x)
a 2 f ( x) a f ( x ) .b f ( x ) b2 f ( x ) a a
m. 2 f ( x ) + n. + p. 2 f ( x ) = 0 ⇔ m.   + n.   + p = 0
b b2 f ( x) b b b
Phương trình này bi t cách gi i.
f (x) 2 f (x)
a a 2
Bư c 2: t t=  
,t>0. Ta có t =  
b b
mt + nt + p = 0 (*)
2
PT ã cho tr thành: 
t > 0
Bư c 3: Gi i (*) tìm nghi m t>0
-3- Gv: Nguy n Phan Anh Hùng-THPT Hương Giang
Toán 12 Ôn t p h th ng phương trình mũ-lôgarit
f (x)
a
Bư c 4: V i t tìm ư c, gi i phương trình   =t tìm x
b
Bư c 5: K t lu n (nghi m c a (1))

Bài t p: Gi i phương trình sau.
1) 3.8x + 4.12x − 18x − 2.27x = 0 2) 8x + 18x = 2.27x 3)32 x + 4 + 45.6 x − 9.22 x + 2 = 0
2 1 1 −1 −1 −1
2 2 2
4)7.4 x − 9.14 x + 2.49 x = 0 5)10 x + 25 x = 4, 25.50 x 6)4 x + 6 x = 9 x
2 2 2
7)9 x + 6 x = 22 x +1 8)32 x −6 x + 9
+ 4.15 x + 3 x −5
= 3.5 x − 6 x +9

x +1
9)3 – 22x + 1 – 12x/2 = 0 10)125x + 50x = 23x + 1

3.Phương pháp lôgarit hóa (l y lôgarit hai v v i cơ s thích h p)
D ng t ng quát: a f ( x ) .b g ( x ) .c h ( x ) = d
Trong phương trình có ch a cơ s khác nhau và s mũ khác nhau
Cách gi i: L y lôgarit cơ s a (ho c b,ho c c) hai v
Ta ư c
log a (a f ( x ) .b g ( x ) .c h ( x ) ) = log a d
⇔ log a a f ( x ) + log a b g ( x ) + log a c h ( x ) = log a d
⇔ f ( x) + g ( x) log a b + h( x) log a c = log a d
Bi t ư c log a b, log a c, log a d là các s th c. Gi i phương trình ta thu ư c n x.
Bài t p: Gi i phương trình sau.
x
2
1) 3 .7 = 1
7x 3x
2) 3 .8
x
=6
x x
x +2 3) 2 x = 3x −1 4)57 = 75
x −1
6) 5x.8 x = 500 7) 5x.x +1 8x = 100 8) 76 − x = x + 2
2
5) 3x.2x = 1
4.Phương pháp s d ng tính ng bi n ngh ch bi n c a hàm s .
D ng s d ng tính ơn i u
Thư ng bi n i phương trình v d ng f(x)=g(x) ho c f(x)=c
Vói trư ng h p f(x)=g(x) chúng ta thư ng g p x=a là nghi m c a phương trình ,còn v i m i x ≠ a thì f(x)>b
và f(x)b
và g(x)-1 thì f(x)-1 không th a mãn phương trình ã cho ,Nghĩa là x>-1 không ph i là nghi m
cu a phương trình ã cho.
x
1
Tương t : V i xf(-1) hay   >5 ; x+6 0, a ≠ 1 ; x > 0, x1 > 0, x2 > 0 :

n: log a x = b ⇔ x = a b

Chú ý:

(1) x = aloga x ( ∀x > 0 )
(2) x = loga ax ( ∀x ∈ R )
Tính ch t
1) log a a = 1, log a 1 = 0 2) log a ( x1.x2 ) = log a x1 + log a x2
x1
3) log a = log a x1 − log a x2 4) log a xα = α log a x , ∀α ∈ R
x2
log b x
5) log a x = ( 0 < b ≠ 1)
log b a
1 1
Chú ý: log a b = ; log aα x = log a x , α ≠ 0
log b a α
Lý thuy t:
a s phương trình logarit cơ b n u bi n i v d ng.
+ loga f ( x ) = b ⇔ f ( x ) = ab

f ( x ) > 0
 ( hoaëc g ( x ) > 0 )
+ loga f ( x ) = loga g ( x ) ⇔ 
f ( x ) = g ( x )

Chú ý:Khi không s d ng công th c tương ư ng nh t i u ki n hàm s lôgarit có nghĩa (cơ s ph i
l n hơn 0 và khác 1, bi u th c l y lôgarit ph i dương)
M t s Phương pháp gi i các phương trình mũ cơ b n:
D ng 1: Bi n i v d ng loga f ( x ) = loga g ( x )

Lưu ý: Tìm i u ki n xác nh c a phương trình loga f ( x ) = loga g ( x ) .

 f ( x) > 0
Cách 1: K c a phương trình  , sau ó gi i phương trình loga f ( x ) = loga g ( x ) ⇔ f(x) = g(x)
 g ( x) > 0
f ( x ) > 0 ( hoaëc g ( x ) > 0 )

Cách 2: Bi n i : loga f ( x ) = loga g ( x ) ⇔ 
f ( x ) = g ( x )

Chú ý: 'Cách 2' thư ng d m c sai l m nên khuy n khích các em gi i theo ''cách 1''
Bài t p: Gi i các phương trình sau.

-6- Gv: Nguy n Phan Anh Hùng-THPT Hương Giang
Toán 12 Ôn t p h th ng phương trình mũ-lôgarit
1) log 3 ( x 2 + 2x ) = 1 2) log 3 x + log3 ( x + 2 ) = 1 3) lg ( x 2 + 2x − 3) = lg ( x − 3 )

1 2 1 1 8
4) log2 ( x − 1) + log 1 ( x + 4 ) = 0 5) log ( x + 3) + log 4 ( x − 1) = log2 ( 4x )
2 2 2 2
4

6) log3 x 2 − x − 5 = log 3 ( 2 x + 5 )
( ) 7) log x + 4 = log ( 2 + x − 4 )
2 2

3
8) log3 ( 2x − 2) + log ( 2 x + 1) = log ( 2x+2 − 6)
3 3 9) log x + 1 − log ( 3 − x ) − log ( x − 1)
2 1
2
8 =0

10) 1 + log2 ( 9x − 6 ) = log2 ( 4.3x − 6 ) 11) log 1 ( x − 1) + log 1 ( x + 1) − log 1 ( 7 − x ) = 1
2 2 2


1
12) log2 x 2 − 3 − log2 ( 6x − 10 ) + 1 = 0
( ) 13) log 1 ( x − 3 ) = 1 + log4
4 x
1
14) log 3 ( x − 2) + log 1 2 x − 1 = 0 15)2 log x 2 − 36 + log( x + 1)3 = log( x + 6) + log 3 + log 2
3 3
1 x−3 x −3
16) (lg x + lg 2) + lg( 2 x + 1) = lg 6 17)2 log 3 + 1 = log 3
2 x−7 x −1

18) log 1 + x + 3log 1 − x = log 1 − x 2 − 2 19) log 3 (2 x 2 − 54) + log 1 ( x + 3) = 2 log 9 ( x − 4)
3


20) log(3 x 2 + 12 x + 19) − log(3 x + 4) = 1 21) log 3 ( x − 5) − log 3 2 − log 3 3 x − 20 = 0

log(2 x − 19) − log(3 x − 20) 1
22) = −1 23) log( x 2 − 10 x + 25) + log( x 2 − 6 x + 3) = 2 log( x − 5) + log 3
l ogx 2
24) log9 ( x + 8) − log3 ( x + 26 ) + 2 = 0
D ng 2: Phương pháp t n s ph
( ưa pt lôgarit v phương trình i s b c 2,3 và gi i theo n ph ).
Bi n i và t n s ph thích h p.
Lưu ý: Ngoài vi c t i u ki n bi u th c l og a f ( x) có nghĩa là f(x)>0. C n chú ý n c i m ch a
phương trình ang xét ( ch a căn b c hai ho c ch a n m u) khi ó c n t k cho phương trình có nghĩa.
Các phép bi n i càn chú ý: log a x 2 n = 2n log a x i u ki n x ≠ 0

Bài t p: Gi i các phương trình sau.

1)4 − l ogx = 3 l ogx 2) log 2 ( 4 x ) − log (2x) = 5 3) log 2 x − 3.log 2 x + 2 = 0
2
2 2

2 l og 2 x-log 2 x − 2 log(6 − x) 1
4) l og 2 x + 3l og 2 x + l og 1 x = 2 5) 2
=1 6) =
2 l og 2 x + 1 2 3log(6 − x) − 1

7) log 3 (3x − 1) log 3 (3x +1 − 3) = 6 8) l og 2 x − l ogx 6 = log 2 3 − 9

-7- Gv: Nguy n Phan Anh Hùng-THPT Hương Giang
Toán 12 Ôn t p h th ng phương trình mũ-lôgarit
9) log(10 x) log(0,1x) = l ogx 3 − 3 10)4 log 4 2 (− x) + 2 l og 4 x 2 + 1 = 0

1 6
11) log 2 (100 x) + log 2 (10 x) = 14 + log 12) log 2 ( x 2 + 7) = 5 − l og 2 x −
x 7
log 2 ( x + )
x

2 x
13)(l og 2 x + 2 log 0,5
2 )(3l og 2 x − 1) = 2 l og 2 x 2 .log 2 2
14)2 l og 9 x = l og 3 x.log 3 ( 2 x + 1 − 1)
4 2
15) 1 + l og 2 x + 4 l og 4 x − 3 = 4

D ng 3:Phương pháp mũ hóa.
Bài t p: Gi i các phương trình sau.
1) l og 2 x + l og 3 x = 1 2) log 3 ( x + 1) + log 5 (2 x + 1) = 2

3) l og 3 x + l og 5 x = log15 4) l og 2 x = log 5 ( x + 5)
D ng 4: Phương trình lôgarit nhi u c p.
Phương pháp:H t ng c p m t t ngoài vào theo tính ch t l og a f ( x) = c ⇔ f ( x) = a c
Bài t p:Gi i các phương trình sau.
2
1) log(log(l og(logx))) = 0 2) log 3 (log 4 (log 3 ( x − 3))) = 0

1
3) log 4 (2 log 3 (1 + log(1 + 3l og 3 x))) = 4) log 3 (l og 1 x − 3l og 1 x + 5) = 0
2 2 2

D ng 5: Bi n i v phương trìn tích.
Bài t p:Gi i các phương trình sau.
1)3 x l og 3 x + 6 = 6 x + l og 3 x 3 2)2 x l og 2 x 2 + 2 = 4 x + 4 l og 4 x

1 1
3) log 2 (4 − x ) + log(4 − x ).log( x + ) = 2 log 2 ( x + ) 4) x 2 log 6 5 x 2 − 2 x − 3 − x log 1 (5 x 2 − 2 x − 3) = x 2 + 2 x
2 2 6

D ng 6: Phương pháp s d ng tính ơn i u.
Chú ý d ng: log a u − u = log a v − v có d ng f(u)=f(v) ⇔ u=v,trong ó f(x) là hàm s ng bi n (ngh ch bi n)
trên TX c a nó và phương pháp ánh giá hai v c a phương trình.
Bài t p:Gi i các phương trình sau.
1) l og 2 x = 3 − x 2) x + log( x 2 − x − 6) = 4 + log( x + 2) 3) log 1 x = x − 4
3


x2 + x + 3
4) log 3 2
= x 2 + 3x + 2 5) log( x 2 − x − 12) + x = log( x + 3) + 5
2x + 4x + 5
x2 + x + 1
6) log 3 ( x 2 + x + 1) − l og 3 x = 2 x − x 2 7) log 1 = − x2 + 2x
3 2x2 − x + 1

-8- Gv: Nguy n Phan Anh Hùng-THPT Hương Giang
Toán 12 Ôn t p h th ng phương trình mũ-lôgarit
G i ý: 3) i u ki n xác nh: x>0
Nh n th y x=3 là nghi m c a phương trình (1). Ta ch ng minh nghi m này duy nh t.
Th t v y ∀x > 3 ta có.
• l og 1 x < log 1 3 = −1 (do y=log 1 x là hàm s ngh ch bi n trên ( 0; +∞ ) (*)
3 3 3


• x-4>3-4=-1 (**)
So sánh (*),(**) suy ra ∀x > 3 u không th a mãn phương trình 3) nên không ph i là nghi m.
Làm tương t : 0
Đề thi vào lớp 10 môn Toán |  Đáp án đề thi tốt nghiệp |  Đề thi Đại học |  Đề thi thử đại học môn Hóa |  Mẫu đơn xin việc |  Bài tiểu luận mẫu |  Ôn thi cao học 2014 |  Nghiên cứu khoa học |  Lập kế hoạch kinh doanh |  Bảng cân đối kế toán |  Đề thi chứng chỉ Tin học |  Tư tưởng Hồ Chí Minh |  Đề thi chứng chỉ Tiếng anh
Theo dõi chúng tôi
Đồng bộ tài khoản