TRƯỜNG ĐIỆN TỪ - ELECTROMAGNETIC FIELD THEORY - chương 2

Chia sẻ: vankent

CÁC ĐỊNH LUẬT VÀ NGUYÊN LÍ CƠ BẢN CỦA TRƯỜNG ĐIỆN TỪ 1.1. Các đại lượng đặc trưng cho trường điện từ 1.1.1. Vector cường độ điện trường • Điện trường được đặc trưng bởi lực tác dụng lên điện tích đặt trong điện trường r r F = qE Hay: r r F E= q • Cđđt E tại một điểm bất kì trong điện trường là đại lượng vector có trị số bằng lực tác dụng lên một đơn vị điện tích điểm dương đặt tại điểm đó ...

Bạn đang xem 10 trang mẫu tài liệu này, vui lòng download file gốc để xem toàn bộ.

Nội dung Text: TRƯỜNG ĐIỆN TỪ - ELECTROMAGNETIC FIELD THEORY - chương 2

Chương 1
CÁC ĐỊNH LUẬT
VÀ NGUYÊN LÍ CƠ BẢN CỦA TRƯỜNG ĐIỆN TỪ


1.1. Các đại lượng đặc trưng cho trường điện từ
1.1.1. Vector cường độ điện trường
• Điện trường được đặc trưng bởi lực tác dụng lên điện tích đặt trong điện trường
r r
F = qE (1.1)

Hay:
r
r F (1.2)
E=
q
r
• Cđđt E tại một điểm bất kì trong điện trường là đại lượng vector có trị số bằng
lực tác dụng lên một đơn vị điện tích điểm dương đặt tại điểm đó
• Lực tác dụng giữa 2 đt điểm Q và q
r r
Qq r0 (1.3)
F=
4πεε0 r 2

- ε 0 = 8,854.10 −12 F / m - hằng số điện

- ε - độ điện thẩm tương đối
r
- r0 - vector đơn vị chỉ phương

• Hệ đt điểm q1 , q 2 ,..., q n
r n r r
1 n
q i r0i (1.4)
E = ∑ Ei = ∑ r2
i =1 4πεε0 i =1 i

r
r0i - các vector đơn vị chỉ phương

• Trong thực tế hệ thường là dây mảnh, mặt phẳng hay khối hình học, do đó:
r r
1 r (1.5)
El =
4πεε 0 ∫l ρ l dl r 2
r r
1 r (1.6)
ES = ∫ ρS dS r 2
4πεε 0 S
r r
1 r (1.7)
EV = ∫ ρ V dV r 2
4πεε 0 V

1.1.2. Vector điện cảm
• Để đơn giản khi tính toán đối với các môi trường khác nhau, người ta sử dụng
r
vector điện cảm D

r r
D = εε 0 E (1.8)

1.1.3. Vector từ cảm
• Từ trường được đặc trưng bởi tác dụng lực của từ trường lên điện tích chuyển
động hay dòng điện theo định luật Lorentz
r r r
F = qv × B (1.9)
r
• Từ trường do phần tử dòng điện Id l tạo ra được xác định bởi định luật thực
nghiệm BVL

( )
r μμ 0 r r (1.10)
dB = Id l × r
4πr 2
- μ 0 = 4π.10 −7 = 1,257.10 −6 H / m - hằng số từ

- μ - độ từ thẩm tương đối
• Từ trường của dây dẫn có chiều dài l
r
r μμ0 Id l × r
r (1.11)
B=
4π ∫l r 2
1.1.4. Vector cường độ từ trường
• Để đơn giản khi tính toán đối với các môi trường khác nhau, người ta sử dụng
r
vector cường độ từ trường H
r
r B (1.12)
H=
μμ 0

1.2. Định luật Ohm và định luật bảo toàn điện tích
1.2.1. Định luật Ohm dạng vi phân
• Cường độ dòng điện I chạy qua mặt S đặt vuông góc với nó bằng lượng điện
tích q chuyển qua mặt S trong một đơn vị thời gian
dq (1.13)
I=−
dt
Dấu trừ chỉ dòng điện I được xem là dương khi q giảm
• Để mô tả đầy đủ sự chuyển động của các hạt mang điện trong môi trường dẫn
điện, người ta đưa ra khái niệm mật độ dòng điện
r r r r
J = n 0 ev = ρv = σE (1.14)

dạng vi phân của định luật Ohm
- n0 - mật độ hạt điện có điện tích e
- ρ - mật độ điện khối
r
- v - vận tốc dịch chuyển của các hạt điện
- σ - điện dẫn suất
• Dòng điện qua mặt S được tính theo
r r r r
I = ∫ dI = ∫ JdS = ∫ σEdS (1.15)
S S S


• Một vật dẫn dạng khối lập phương cạnh L, 2 mặt đối diện nối với nguồn áp U,
ta có
L ρ
(lưu ý: áp dụng c/t S = L2 và R = ρ = )
S L
U (1.16)
I = ∫ σEdS = σES = (σL)(EL) = σLU =
S R
dạng thông thường của định luật Ohm
r r
Vì E và dS cùng chiều, đặt
1 (1.17)
σ=
RL
σ - điện dẫn suất có đơn vị là 1/Ωm
1.2.2. Định luật bảo toàn điện tích
• Điện tích có thể phân bố liên tục hay gián đoạn, không tự sinh ra và cũng không
tự mất đi, dịch chuyển từ vùng này sang vùng khác và tạo nên dòng điện.
• Lượng điện tích đi ra khỏi mặt kín S bao quanh thể tích V bằng lượng điện tích
giảm đi từ thể tích V đó.
• Giả sử trong thể tích V được bao quanh bởi mặt S, ta có
Q = ∫ ρdV (1.18)
V


sau thời gian dt lượng điện tích trong V giảm đi dQ
dQ d (1.19)
I=− = − ∫ ρdV
dt dt V
Mặt khác
r r
I = ∫ JdS (1.20)
S


Suy ra
r r ∂ρ (1.21)
∫ JdS = − V ∂t dV
S

Theo định lý OG
r r v ∂ρ
JdS = ∫ (∇.J )dV = − ∫ dV
(1.22)

S V V ∂t


Suy ra
v ∂ρ (1.23)
∇.J + =0
∂t
Đây là dạng vi phân của định luật bảo toàn điện tích hay phương trình liên
tục.
1.3. Các đặc trưng cơ bản của môi trường
• Các đặc trưng cơ bản của môi trường: ε, μ, σ
• Các phương trình:
r r
D = ε 0 εE (1.24)
r
r B (1.25)
H=
μ 0μ

gọi là các phương trình vật chất
• ε, μ, σ ∉ cường độ trường : môi trường tuyến tính
• ε, μ, σ ≡ const : môi trường đồng nhất và đẳng hướng
• ε, μ, σ theo các hướng khác nhau có giá trị không đổi khác nhau: môi trường
không đẳng hướng. Khi đó ε, μ biểu diễn bằng các tensor có dạng như bảng số.
Chẳng hạn ferrite bị từ hoá hoặc plasma bị từ hoá là các môi trường không đẳng
hướng khi truyền sóng điện từ
• ε, μ, σ ∈ vị trí : môi trường không đồng nhất
Trong tự nhiên đa số các chất có ε > 1 và là môi trường tuyến tính.
Xecnhec có ε >> 1 : môi trường phi tuyến
μ > 1 : chất thuận từ : các kim loại kiềm, Al, NO, Phương trình, O, N, không
khí, ebonic, các nguyên tố đất hiếm
μ < 1 : chất nghịch từ : các khí hiếm, các ion như Na+, Cl- có các lớp electron
giống như khí hiếm, và các chất khác như Pb, Zn, Si, Ge, S, CO2, H2O, thuỷ tinh,
đa số các hợp chất hữu cơ
μ >> 1 : chất sắt từ : môi trường phi tuyến : Fe, Ni, Co, Gd, hợp kim các
nguyên tố sắt từ hoặc không sắt từ Fe-Ni, Fe-Ni-Al. Độ từ hoá của chất sắt từ lớn
hơn độ từ hoá của chất nghịch từ và thuận từ hàng trăm triệu lần.
• Căn cứ vào độ dẫn điện riêng σ: chất dẫn điện, chất bán dẫn và chất cách điện
hay điện môi
Chất dẫn điện: σ > 104 1/Ωm, σ = ∞ : chất dẫn điện lý tưởng
Chất bán dẫn: 10-10 < σ < 104
Chất cách điện: σ < 10-10, σ = 0 : điện môi lý tưởng
Không khí là điện môi lý tưởng: ε = μ = 1, σ = 0
1.4. Định lí Ostrogradski-Gauss đối với điện trường
• Được tìm ra bằng thực nghiệm, là cơ sở của các phương trình Maxwell
r
• Thông lượng của vector điện cảm D qua mặt S là đại lượng vô hướng được xác
định bởi tích phân
r r
Φ E = ∫ DdS (1.26)
S




r
dS
r
D


r
r


q S

r
dS : vi phân diện tích theo hướng pháp tuyến ngoài
r r r
dS.cos( D , dS ) : hình chiếu của S lên phương D
r
• Xét một mặt kín S bao quanh điện tích điểm q, tính thông lượng của D do q tạo
ra qua mặt kín S, ta có
(
r r
r r q.dS. cos D, dS
dΦ = DdS = =
q )

(1.27)
4πr 2

dΩ là vi phân góc khối từ điện tích q nhìn toàn bộ diện tích dS
r
Thông lượng của D qua toàn mặt kín S là
r r q (1.28)
Φ = ∫ Dd S = ∫ dΩ = q
S 4π Ω

• Xét trường hợp điện tích điểm q nằm ngoài mặt kín S. Từ điện tích q nhìn toàn
mặt S dưới một góc khối nào đó. Mặt S có thể chia thành 2 nửa S và S' (có giao
tuyến là AB). Pháp tuyến ngoài của S và S' sẽ có chiều ngược nhau. Do đó tích
r
phân trên S và S' có cùng giá trị nhưng trái dấu. Khi đó thông lượng của D qua
toàn mặt kín S bằng 0.
A r
D
r
dS

B


q

• Xét hệ điện tích điểm q1, q2, ..., qn đặt trong mặt kín S, ta có
r n r
(1.29)
D = ∑ Di
i =1

r
Thông lượng của D do hệ q1, q2, ..., qn gây ra qua toàn mặt kín S
r r n r r n (1.30)
Φ = ∫ DdS = ∑ ∫ D i dS = ∑ q i = Q
S i =1 S i =1

r
Vậy: Thông lượng của vector điện cảm D qua mặt kín S bất kỳ bằng tổng đại
số các điện tích nằm trong thể tích V được bao quanh bởi S
Lưu ý: Vì Q là tổng đại số các điện tích q1, q2, ..., qn, do đó Φ có thể âm hoặc
dương
• Nếu trong thể tích V được bao quanh bởi S có mật độ điện khối ρ thì Φ được
tính theo
r r
Φ E = ∫ DdS = ∫ ρdV = Q (1.31)
S V


Các công thức (1.30) và (1.31) là dạng toán học của định lí Ostrogradski-
Gauss đối với điện trường.
Nguyên lý liên tục của từ thông
• Thực nghiệm đã chứng tỏ đường sức từ là khép kín dù nguồn tạo ra nó là dòng
điện hay nam châm. Tìm biểu thức toán học biểu diễn cho tính chất này
r
• Giả sử có mặt kín S tuỳ ý nằm trong từ trường với vector từ cảm B . Thông
r
lượng của B qua mặt kín S bằng tổng số các đường sức từ đi qua mặt S này. Do
đường sức từ khép kín nên số đường sức từ đi vào thể tích V bằng số đường sức
r
từ đi ra khỏi thể tích V đó. Vì vậy thông lượng của B được tính theo
r r
Φ M = ∫ BdS = 0 (1.32)
S


Công thức (1.32) gọi là nguyên lý liên tục của từ thông. Đây là một phương
trình cơ bản của trường điện từ
1.5. Luận điểm thứ nhất - Phương trình Maxwell-Faraday
Khi đặt vòng dây kín trong một từ trường biến thiên thì trong vòng dây này xh
r
dòng điện cảm ứng. Chứng tỏ trong vòng dây có một điện trường E có chiều là
chiều của dòng điện cảm ứng đó.
Thí nghiệm với các vòng dây làm bằng các chất khác nhau, trong điều kiện
nhiệt độ khác nhau đều có kết quả tương tự. Chứng tỏ vòng dây dẫn không phải là
nguyên nhân gây ra điện trường mà chỉ là phương tiện giúp chỉ ra sự có mặt của
điện trường đó. Điện trường này cũng không phải là điện trường tĩnh vì đường sức
của điện trường tĩnh là đường cong hở. Điện trường tĩnh không làm cho hạt điện
dịch chuyển theo đường cong kín để tạo thành dòng điện được (vì hoá ra trong điện
trường tĩnh không cần tốn công mà vẫn sinh ra năng lượng điện !).
Muốn cho các hạt điện dịch chuyển theo đường cong kín để tạo thành dòng
điện thì công phải khác 0, có nghĩa là
r r
∫ qEd l ≠ 0 (1.33)
l


và đ.sức của điện trường này phải là các đ.cong kín và gọi là điện trường xoáy.
Phát biểu luận điểm I: Bất kì một từ trường nào biến đổi theo thời gian cũng
tạo ra một điện trường xoáy.
Thiết lập phương trình Maxwell-Faraday:
Theo định luật cảm ứng điện từ của Faraday, sức điện động cảm ứng xh trong
một vòng dây kim loại kín về trị số bằng tốc độ biến thiên của từ thông đi qua diện
tích của vòng dây
dΦ (1.34)
ec = −
dt
Dấu (-) phản ảnh sức điện động cảm ứng trong vòng dây tạo ra dòng điện cảm
ứng có chiều sao cho chống lại sự biến thiên của từ thông Φ
r r
Φ = ∫ BdS (1.35)
S

r
là thông lượng của vector từ cảm B qua S được bao bởi vòng dây. Suy ra
r r
dΦ d r r ⎛ dB ⎞ r ⎛ ∂B ⎞ r (1.36)
ec = − = − ∫ BdS = ∫ ⎜ −
⎜ dt ⎟dS = ∫ ⎜ − ∂t ⎟dS
⎟ ⎜ ⎟
dt dt S S⎝ ⎠ S⎝ ⎠
Hoặc biểu diễn sức điện động cảm ứng ec theo lưu số của vector cường độ
r
điện trường E
r r
e c = ∫ Ed l (1.37)
l


Chiều của vòng dây kín l lấy ngược chiều kim đồng hồ khi nhìn nó từ ngọn
r
của B
r
B
r
dS
S



r
dl
Vì vòng dây kín l đứng yên nên theo các công thức (1.35), (1.36), (1.37) ta có
r
r r ⎛ ∂B ⎞ r (1.38)
∫l Ed l = ∫ ⎜ − ∂t ⎟dS
S⎝
⎜ ⎟

Đây là phương trình Maxwell-Faraday dưới dạng tích phân, cũng là một
phương trình cơ bản của trường điện từ.
Vậy: Lưu số của vector cường độ điện trường xoáy dọc theo một đường cong
kín bất kì bằng về giá trị tuyệt đối nhưng trái dấu với tốc độ biến thiên theo thời
gian của từ thông gửi qua diện tích giới hạn bởi đường cong kín đó.
Theo giải tích vector (công thức Green-Stock)
r r
( )
r r
∫ Ed l = ∫ ∇ × E dS (1.39)
l S


Theo các phương trình (1.38) và (1.39)
r
r ∂B (1.40)
∇×E = −
∂t
Đây là phương trình Maxwell-Faraday dưới dạng vi phân, có thể áp dụng đối
với từng điểm một trong không gian có từ trường biến thiên.
1.6. Luận điểm thứ hai - Phương trình Maxwell-Ampere
Theo luận điểm I, từ trường biến thiên theo thời gian sinh ra điện trường xoáy.
Vậy ngược lại điện trường biến thiên có sinh ra từ trường không ? Để đảm bảo
tính đối xứng trong mối liện hệ giữa điện trường và từ trường, Maxwell đưa ra luận
điểm II:
Bất kì một điện trường nào biến thiên theo thời gian cũng tạo ra một từ
trường.
(Đã chứng minh bằng thực nghiệm)
Lưu ý: điện trường nói chung có thể không p.bố đồng đều trong không gian,
có nghĩa là thay đổi từ điểm này sang điểm khác, nhưng theo luận điểm II sự biến
thiên của điện trường theo không gian không tạo ra từ trường, chỉ có sự biến
thiên của điện trường theo thời gian mới tạo ra từ trường.
Thiết lập phương trình Maxwell-Ampere:
Theo nguyên lí tác dụng từ của dòng điện và định luật Biot-Savart-Laplace,
Ampere phát biểu định luật dòng điện toàn phần:
r
Lưu số của vector cường độ từ trường H dọc theo một đường cong kín bất kì
bằng tổng đại số các dòng điện đi qua diện tích bao bởi đường cong này
v r n (1.41)
∫ Hd l = ∑ I i = I
l i =1




r Ii
dS
r
J
S

r
dl


Dòng điện I đi qua diện tích S có thể phân bố liên tục hoặc gián đoạn.
r
Nếu dòng điện qua mặt S có phân bố liên tục với mật độ dòng điện J thì
v r r r
∫ Hd l = ∫ JdS (1.42)
l S


Định luật dòng điện toàn phần cũng là một phương trình cơ bản của trường
điện từ
Khái niệm về dòng điện dịch
Căn cứ vào định luật cảm ứng điện từ của Faraday và định luật dòng điện toàn
phần của Ampere, Maxwell bằng lý thuyết đã chỉ ra sự tác dụng tương hỗ giữa đt
và từ trường cùng với việc đưa ra khái niệm mới về dòng điện dịch. Dòng điện
dịch có mật độ được tính theo công thức
r r v
r ∂D ∂E ∂P r r (1.43)
Jd = = ε0 + = J d 0 + J dP
∂t ∂t ∂t
Trong đó:
v
r ∂P
J dP = - mật độ dòng điện p.cực trong điện môi do sự xê dịch của các điện
∂t
tích
r
r ∂E
Jd0 = ε 0 - điện trường biến thiên trong chân không và gọi là mật độ dòng
∂t
điện dịch
Để chứng minh sự tồn tại của dòng điện dịch, xét thí dụ sau: có một mặt kín S
bao quanh 1 trong 2 bản của tụ điện. Do có điện áp xoay chiều đặt vào tụ điện nên
r
giữa 2 bản tụ có điện trường biến thiên E và dòng điện biến thiên chạy qua tụ.
Dòng điện này chính là dòng điện dịch trong chân không vì giữa 2 bản tụ không
tồn tại điện tích chuyển động và có giá trị:
r
∂E (1.44)
Id0 = S′ε 0
∂t
Theo định luật Gauss
r r
q = ∫ ε 0 EdS = ε 0 ES′ (1.45)
S
r
∫S
dS = S′ vì điện trường chỉ tồn tại giữa 2 bản tụ

Đối với môi trường chân không, ta có: ε = 1



S
+q S'

r
E
~
-q



Dòng điện dẫn chạy trong dây dẫn nối với tụ có giá trị bằng
r
dq d r r ∂E (1.46)
dt dt ∫
I= = ε 0 EdS = S′ε 0
S ∂t
Suy ra
I = Id0 (1.47)
Vậy: dòng điện dịch chạy giữa 2 bản tụ bằng dòng điện dẫn chạy ở mạch
ngoài tụ điện.
Bằng cách bổ sung dòng điện dịch vào vế phải của phương trình (1.42), ta có
(bổ sung được vì về khía cạnh tạo ra từ trường dòng điện dịch tương đương
dòng điện dẫn)
r
v r r r ∂D r (1.48)
∫l Hd l = ∫ JdS + ∫ ∂t dS
S S


Hay
r
v r ⎛ r ∂D ⎞ r (1.49)
∫l Hd l = ∫ ⎜ J + ∂t ⎟dS
S⎝
⎜ ⎟

Đây là phương trình Maxwell-Ampere dưới dạng tích phân
Theo giải tích vector (công thức Green-Stock)
v r
( )
r r
∫ Hd l = ∫ ∇ × H dS (1.50)
l S


Suy ra
r
r r ∂D r r (1.51)
∇×H = J + = J + Jd
∂t
Đây là phương trình Maxwell-Ampere dưới dạng vi phân, cũng là một
phương trình cơ bản của trường điện từ
Nếu môi trường có điện dẫn suất σ = 0 (điện môi lí tưởng và chân không) thì
r r
do J = σE = 0 , ta có:
r
r ∂E r (1.52)
∇ × H = ε0 = Jd0
∂t
Vậy: dòng điện dịch hay điện trường biến thiên theo thời gian cũng tạo ra từ
trường như dòng điện dẫn.
1.7. Trường điện từ và hệ phương trình Maxwell
Theo các luận điểm của Maxwell, từ trường biến thiên theo thời gian tạo ra
điện trường xoáy, và ngược lại điện trường biến thiên theo thời gian tạo ra từ
trường. Vậy trong không gian điện trường và từ trường có thể đồng thời tồn tại và
có liên hệ chặt chẽ với nhau
Điện trường và từ trường đồng thời tồn tại trong không gian tạo thành một
trường thống nhất gọi là trường điện từ.
Trường điện từ là một dạng vật chất đặc trưng cho sự tương tác giữa các hạt
mang điện.
- Phương trình Maxwell-Faraday
Dạng tích phân
r
r r ⎛ ∂B ⎞ r (1.53)
∫l Ed l = ∫ ⎜ − ∂t ⎟dS
S⎝
⎜ ⎟

Dạng vi phân
r
r ∂B (1.54)
∇×E = −
∂t
Diễn tả luận điểm thứ nhất của Maxwell về mối liên hệ giữa từ trường biến
thiên và điện trường xoáy.
- Phương trình Maxwell-Ampere
Dạng tích phân
r
v r ⎛ r ∂D ⎞ r (1.55)
∫l Hd l = ∫ ⎜ J + ∂t ⎟dS
S⎝
⎜ ⎟

Dạng vi phân
r
r r ∂D (1.56)
∇×H = J +
∂t

Diễn tả luận điểm thứ hai của Maxwell: điện trường biến thiên cũng sinh ra
từ trường như dòng điện dẫn.
- Định lí OG đối với điện trường
Dạng tích phân
r r

S
DdS = q (1.57)

r r r
Theo giải tích vector: ∫ DdS = ∫ ∇.DdV và q = ∫ ρdV , ta có
S V V


Dạng vi phân
r
∇.D = ρ (1.58)
Diễn tả tính không khép kín của các đường sức điện trường tĩnh luôn từ các
điện tích dương đi ra và đi vào các điện tích âm: trường có nguồn
- Định lí OG đối với từ trường
Dạng tích phân
r r

S
BdS = 0 (1.59)
Dạng vi phân
r
∇.B = 0 (1.60)
Diễn tả tính khép kín của các đường sức từ trường: trường không có nguồn
Các phương trình (1.54), (1.56), (1.58), (1.60) gọi là hệ phương trình Maxwell
r
r ∂B
∇×E = −
∂t
r
r r ∂D (1.61)
∇×H = J +
∂t
r
∇.D = ρ
r
∇.B = 0
- Hệ phương trình Maxwell với nguồn ngoài
Trong lí thuyết anten bức xạ điện từ phát ra từ nguồn và đi vào không gian.
Dòng điện trong anten là nguồn bức xạ điện từ. Nguồn dòng điện này độc lập với
môi trường và không chịu ảnh hưởng của trường do nó tạo ra, gọi là nguồn ngoài.
Các nguồn ngoài có bản chất điện hoặc không điện. Để đặc trưng cho nguồn ngoài
r
của trường điện từ ta có khái niệm mật độ dòng điện ngoài J O . Đ.luật Ohm dạng vi
phân:
( )
r r r r
J + JO = σ E + E O (1.62)

Nhận xét: hệ phương trình Maxwell (1.61) chỉ mô tả trường điện từ tại những
điểm trong không gian không tồn tại nguồn ngoài của trường hay trường điện từ
tự do. Khi có nguồn ngoài hệ phương trình Maxwell được viết lại
r
r ∂B
∇×E = −
∂t
r
r r r ∂D (1.63)
∇ × H = J + JO +
∂t
r
∇.D = ρ
r
∇.B = 0
Trong môi trường đồng nhất và đẳng hướng có ε, μ và σ, tức là
r r
môi trường điện môi: D = εε 0 E
r r
môi trường dẫn điện: J = σE
r r
môi trường từ hoá: B = μμ 0 H , ta có
r
r ∂H
∇ × E = −μμ 0
∂t
r
r r r ∂E (1.64)
∇ × H = σE + J O + εε 0
∂t
r ρ
∇.E =
εε 0
r
∇.H = 0
- Nguyên lí đổi lẫn của hệ phương trình Maxwell
• Xét trường hợp môi trường đồng nhất và đẳng hướng, không dòng điện
r r
dẫn, không điện tích tự do và nguồn ngoài J = J O = ρ = 0
r
r ∂H
∇ × E = −μμ 0
∂t
r
r ∂E (1.65)
∇ × H = εε 0
∂t
r
∇.E = 0
r
∇.H = 0
r r
Nhận xét: E và H đối xứng và có thể đổi lẫn cho nhau
• Để hệ phương trình Maxwell trong trường hợp có nguồn ngoài vẫn đối
xứng, cần phải đưa thêm 2 đại lượng hình thức
r
J M - mật độ dòng từ ngoài

ρM - mật độ từ khối
Trong môi trường đồng nhất và đẳng hướng, không dòng điện dẫn, không
điện tích tự do, với nguồn điện và từ ngoài
r
r r ∂H
∇ × E = − J M − μμ 0
∂t
r
r r ∂E (1.66)
∇ × H = J E + εε 0 , JE ≡ JO
∂t
r ρ
∇.E =
εε 0
r ρ
∇.H = M
μμ 0

Ứng dụng: nếu kết quả bài toán cho một nguồn điện (nguồn từ) đã biết, thì sử
dụng nguyên lý đổi lẫn để xác định kết quả bài toán cho một nguồn từ (nguồn
điện), mà không cần phải giải cả hai.
- Hệ phương trình Maxwell đối với trường điện từ điều hoà
Trường điện từ và nguồn biến thiên điều hoà với tần số góc ω nên có thể biểu
diễn dưới dạng phức, ta có
r r

E = re E
r r

(1.67)
H = re H
r r

J = re J

ρ = re ρ
Với:

• • r r iωt r r iωt r r iωt
• • • • • •
(1.68)
ρ = ρm e iωt
; E = Em e ; H = Hm e ; J = J m e
r
• r
• r r r
Trong đó: E m ≡ E m (x, y, z ) = i E mx eiϕ + j E mye + kE mz eiϕ gọi là biên độ phức của
x
iϕ y z





r
E ; ϕx, ϕy, ϕz là các pha ban đầu

Khi đó
r
• r

∇ × E m = −iωμμ 0 H m
r
• r
• r
• r

(1.69)
∇ × H = σ E m + iωεε 0 E m + J Em

r

ρ
∇. E m = m
εε 0
r

∇. H = 0
1.8. Điều kiện biên đối với các vector của trường điện từ
Xét hai môi trường 1 và 2 có mặt phân cách S, xét tính liên tục hoặc gián
đoạn của các vector của trường điện từ và đã xác định được
- đối với thành phần pháp tuyến của điện trường
D1n - D2n = ρS (1.70)
ρS mật độ điện mặt
E 1n ε 2
Khi ρS = 0 ta có: D1n = D2n hay =
E 2 n ε1

- đối với thành phần tiếp tuyến của điện trường
D1τ ε 2 (1.71)
E1τ = E2τ, =
D 2 τ ε1


- đối với thành phần pháp tuyến của từ trường
H 1n μ 2 (1.72)
B1n = B2n, =
H 2 n μ1

- đối với thành phần tiếp tuyến của từ trường
H1τ - H2τ = IS (1.73)
IS dòng điện mặt
B1τ μ 2
Khi IS = 0 ta có: H1τ = H2τ hay =
B 2 τ μ1
- Trường hợp đặc biệt môi trường 1 là điện môi và môi trường 2 là vật dẫn lí
tưởng có σ2 = ∞. Trong vật dẫn lí tưởng trường điện từ không tồn tại, có nghĩa là
r r
E2 = H2 = 0 .
r r
Thực vậy, nếu vật dẫn lí tưởng tồn tại trường điện từ E 2 ; H 2 ≠ 0 thì dưới tác
dụng của trường các điện tích tự do sẽ phân bố lại điện tích trên bề mặt của nó cho
đến khi trường phụ do chúng tạo ra triệt tiêu với trường ban đầu và kết quả trường
tổng hợp trong vật dẫn lý tưởng bằng 0. Trên bề mặt S của vật dẫn lí tưởng có
dòng điện mặt và điện tích mặt tồn tại trong một lớp mỏng vô hạn.
Khi đó ta được
ρS (1.74)
E1n =
ε1

E1τ = 0
H1n = 0
H1τ = IS
Vậy: trường điện từ trong điện môi sát mặt vật dẫn lí tưởng chỉ có thành phần
r r
pháp tuyến của E và thành phần tiếp tuyến của H
1.9. Năng lượng trường điện từ - Định lí Umov Poynting
- Năng lượng của trường điện từ
⎛ εε 0 E 2 μμ 0 H 2 ⎞
W = WE + WM = ∫ (ω E + ω M )dV = ∫ ⎜
⎜ + ⎟dV
V V⎝ 2 2 ⎟ ⎠
- Định lí Umov Poynting
Đã chứng minh được
r r dW (1.75)

S
ΠdS = −
dt
− Pt − PO

Trong đó
r r r
Π = E × H (W/m2) vector Poynting
rr r r
Phương trình = ∫ JEdV = ∫ σE 2 dV công suất tiêu hao nhiệt do dòng điện dẫn J
V V


gây ra trong V
r r
PO = ∫ J E EdV công suất của nguồn ngoài trong thể tích V
V


(1.75) gọi là định lí Umov Poynting mô tả sự cân bằng của trường điện từ
trong thể tích V
Phát biểu: Tổng các độ biến đổi năng lượng trường điện từ, công suất tổn hao
nhiệt và công suất nguồn ngoài trong thể tích V bằng thông lượng của vector
Poynting qua mặt kín S bao thể tích V đó.
r
Vector Poynting Π biểu thị sự dịch chuyển năng lượng của trường điện từ.
1.10. Định lí nghiệm duy nhất
Hệ phương trình Maxwell có nghiệm duy nhất khi trường điện từ thoả mãn
các điều kiện sau
1. Biết các vector cđ điện trường và từ trường tại thời điểm t0 = 0 ở tại bất kì
điểm nào trong vùng không gian khảo sát hay còn gọi là điều kiện ban đầu, tức là
r r
E 0 = E(x , y, z,0 ) khi t = 0
r r
H 0 = H (x , y, z,0 ) (1.76)
r r
2. Biết thành phần tiếp tuyến của E và thành phần tiếp tuyến của H tại mặt
giới hạn S bao miền không gian khảo sát trong khoảng thời gian 0 < t < ∞ hay còn
gọi là điều kiện biên
E = Eτ|S hoặc H = Hτ|S với 0 < t < ∞ (1.77)
Nhận xét: Định lí nghiệm duy nhất có ý nghĩa quan trọng vì bằng cách nào đó
ta nhận được nghiệm của hệ phương trình Maxwell và nếu nó thoả mãn các điều
kiện trên thì nghiệm nhận được là duy nhất.
1.11. Nguyên lí tương hỗ
Nguyên lí tương hỗ phản ảnh mối quan hệ tương hỗ giữa trường điện từ và
các nguồn tạo ra nó tại hai điểm khác nhau trong không gian.
1. Bổ đề Lorentz
Dạng vi phân
⎛r • r ⎞

⎛r • r ⎞ r r
• • • r
• r

(1.78)
∇.⎜ E1m × H 2 m ⎟ − ∇.⎜ E 2 m × H1m ⎟ = J E1m E 2 m − J E 2 m E1m −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛r• r
• r
• r ⎞

− ⎜ J M 1m H 2 m − J M 2 m H 1m ⎟
⎜ ⎟
⎝ ⎠
Dạng tích phân
⎛⎛ r• r ⎞ ⎛r
• • r ⎞⎞
• (1.79)
∫ ⎜⎜
⎜ ⎜ E1m × H 2 m ⎟ − ⎜ E 2 m × H1m ⎟ ⎟dS =
S ⎝⎝
⎟ ⎜
⎠ ⎝
⎟⎟
⎠⎠
⎛r r
• • r
• r ⎞ ⎛r
• • r
• r
• r ⎞

= ∫ ⎜ J E1m E 2 m − J E 2 m E1m ⎟ − ⎜ J M1m H 2 m − J M 2 m H1m ⎟dV
⎜ ⎟ ⎜ ⎟
V⎝ ⎠ ⎝ ⎠
V → ∞, ta có
⎛r r
• • r
• r ⎞ ⎛r
• • r
• r
• r ⎞

(1.80)
∫ ⎜ J E1m E 2 m − J E 2 m E1m ⎟ − ⎜ J M1m H 2 m − J M 2 m H1m ⎟dV = 0
V⎝
⎜ ⎟ ⎜
⎠ ⎝


2. Nguyên lí tương hỗ
Giả sử trong môi trường đồng nhất và đẳng hướng, nguồn điện và từ 1 phân
bố trong V1, nguồn điện và từ 2 phân bố trong V2 và 2 thể tích này không có miền
chung. Do đó vế trái của phương trình (1.80) tích phân trong miền V → ∞ chia
thành 3 miền V1, V2 và miền còn lại. Tuy nhiên tích phân trong miền còn lại bằng
0 vì miền này không tồn tại nguồn cho nên phương trình (1.80) được viết lại
⎛r r
• • r
• r ⎞

⎛r• r
• r
• r ⎞

(1.81)
∫⎜⎜ J E1m E 2 m − J M1m H 2 m ⎟dV = ∫ ⎜ J E 2 m E1m − J M 2 m H1m ⎟dV
V1⎝



V 2⎝


gọi là nguyên lí tương hỗ của trường điện từ và nguồn của chúng ở 2 miền khác
nhau.
1.12. Nguyên lí đồng dạng điện động
Nguyên lí đồng dạng điện động hay còn gọi là nguyên lí mẫu hoá xác định
mối quan hệ giữa trường điện từ. Các tham số điện và hình học của hệ điện từ và
môi trường đối với 2 hệ điện từ đồng dạng điện động với nhau.
Tham số hoá các đại lượng của trường điện từ
r r r r r r r r
H = α 1a 1 ; E = α 2 a 2 ; J E = α 3 a 3 ; J M = α 4 a 4 ; l = α 5 a 5 ; t = α 6 a 6 (1.82)
r r r r
a 1 ; a 2 ; a 3 ; a 4 là các vector đơn vị không có thứ nguyên chỉ sự phụ thuộc của

cường độ trường và nguồn vào các toạ độ không gian và thời gian
a 5 ; a 6 là các đơn vị vô hướng xác định toạ độ không gian và thời gian

Các hệ số tỉ lệ αi có thứ nguyên tương ứng là
α1 [A/m], α2 [V/m], α3 [A/m2], α4 [V/m2], α5 [m], α6 [s]
Thay các đại lượng trong (1.82) vào các phương trình Maxwell sau đây
r
r r r ∂E (1.83)
∇ × H = σE + J E + εε 0 , JE ≡ JO
∂t
r
r r ∂H
∇ × E = − J M − μμ 0
∂t
Ta được
r
r ∂a 2 r (1.84)
∇ × a 1 = c1 + c 2 + c 3a 3
∂a 6
r
r r ∂a 1
∇ × a 2 = −c 4 a 4 − c 5
∂a 6

Các hệ số tỉ lệ ci không có thứ nguyên tương ứng với các biểu thức sau
σα 2 α 5 εα α αα α α μα α
c1 = ; c 2 = 2 5 ; c3 = 3 5 ; c 4 = 4 5 ; c5 = 1 5
α1 α6 α1 α2 α 2α 6

Hệ phương trình (1.84) là dạng không có thứ nguyên, mô tả các hệ điện từ
khác nhau qua hệ số ci. Hai hệ điện từ có các hệ số ci tương ứng bằng nhau gọi là 2
hệ đồng dạng điện động với nhau.
1.13. Trường tĩnh điện
Trường tĩnh điện được tạo ra bởi các điện tích đứng yên và không biến đổi
theo thời gian, ta có hệ phương trình Maxwell như sau
r
∇×E = 0
r
∇.D = ρ (1.85)
r r
D = εε 0 E

1.14. Từ trường của dòng điện không đổi
r
∇×E = 0
r
∇.D = ρ (1.86)
r r
D = εε 0 E


r r
∇×H = J
r
∇.B = 0 (1.87)
r r
B = μμ 0 H

Nhận xét: Điện trường của dòng điện không đổi cũng tương tự như điện
trường tĩnh và là một trường thế, chỉ khác nhau là điện trường của dòng điện không
r r
đổi tồn tại ngay cả trong vật dẫn J = σE , còn điện trường tĩnh thì không tồn tại bên
trong vật dẫn.
Đề thi vào lớp 10 môn Toán |  Đáp án đề thi tốt nghiệp |  Đề thi Đại học |  Đề thi thử đại học môn Hóa |  Mẫu đơn xin việc |  Bài tiểu luận mẫu |  Ôn thi cao học 2014 |  Nghiên cứu khoa học |  Lập kế hoạch kinh doanh |  Bảng cân đối kế toán |  Đề thi chứng chỉ Tin học |  Tư tưởng Hồ Chí Minh |  Đề thi chứng chỉ Tiếng anh
Theo dõi chúng tôi
Đồng bộ tài khoản