Tuyển tập đề thi học sinh giỏi môn toán các tỉnh thành 2008 - 2009

Chia sẻ: Trần Bá Trung4 | Ngày: | Loại File: PDF | Số trang:40

0
521
lượt xem
242
download

Tuyển tập đề thi học sinh giỏi môn toán các tỉnh thành 2008 - 2009

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tuyển tập đề thi học sinh giỏi môn toán các tỉnh thành 2008 - 2009 được sưu tầm, gồm các đề thi qua các năm, để có tài liệu học tập và luyện thi, giúp các em có cách nhìn toàn diện về kiến thức và kĩ năng cần nắm vững trước khi bước vào Kì thi với tâm thế vững vàng nhất. Tác giả hi vọng tài liệu này sẽ là tài liệu bổ ích cho các em học sinh lớp 12, trước hết là các học sinh lớp Ôn thi Đại học. Chúc các em...

Chủ đề:
Lưu

Nội dung Text: Tuyển tập đề thi học sinh giỏi môn toán các tỉnh thành 2008 - 2009

  1. Chuyên đề Tuyển tập đề thi học sinh giỏi môn toán các tỉnh thành 2008 - 2009
  2. Tuy n t p đ thi h c sinh gi i các t nh thành 2008-2009 phuchung - 11 Toán- THPT Qu c H c Hu Ngày 11 tháng 5 năm 2009 M cl c 1 H i Phòng 4 1.1 Ch n sinh gi i không chuyên . . . . . . . . . . . . . . . . . . . 4 1.2 Ch n đ i tuy n qu c gia . . . . . . . . . . . . . . . . . . . . . 5 2 Ngh An 5 2.1 Ch n đ i tuy n qu c gia . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Vòng 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Vòng 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Ch n đ i tuy n Đ i h c Vinh . . . . . . . . . . . . . . . . . . 8 2.3 Ch n h c sinh gi i không chuyên . . . . . . . . . . . . . . . . 8 3 Th a Thiên Hu 9 3.1 Ch n h c sinh gi i không chuyên . . . . . . . . . . . . . . . . 9 3.2 Ch n đ i tuy n qu c gia . . . . . . . . . . . . . . . . . . . . . 11 4 Hà Tĩnh 12 4.1 Ch n h c sinh gi i không chuyên . . . . . . . . . . . . . . . . 12 4.2 Ch n đ i tuy n qu c gia . . . . . . . . . . . . . . . . . . . . . 12 4.2.1 Vòng 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2.2 Vòng 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 C n Thơ 14 5.1 Vòng 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5.2 Vòng 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1
  3. Tuy n t p đ thi HSG 2008-2009 M CL C 6 Bà R a Vũng Tàu 17 6.1 Ch n đ i tuy n trư ng chuyên Lê Quý Đôn . . . . . . . . . . 17 7 Thanh Hóa 18 7.1 Vòng 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.2 Vòng 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7.3 Lam Sơn 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8 H i Dương 20 8.1 Vòng 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 8.2 Vòng 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 9 Đ ng Tháp 22 9.1 Ch n đ i tuy n qu c gia . . . . . . . . . . . . . . . . . . . . . 22 10 Tp. H Chí Minh 23 10.1 Tp. H Chí Minh . . . . . . . . . . . . . . . . . . . . . . . . . 23 10.2 PTNK ĐHQG . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 10.2.1 Vòng 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 10.2.2 Vòng 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 11 Hà N i 26 11.1 Tp. Hà N i . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 11.2 Đ i h c sư ph m Hà N i . . . . . . . . . . . . . . . . . . . . . 27 11.2.1 Vòng 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 11.2.2 Vòng 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 11.3 Đ i h c KHTN Hà N i . . . . . . . . . . . . . . . . . . . . . . 28 11.3.1 Vòng 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 11.3.2 Vòng 2 - Ngày 1 . . . . . . . . . . . . . . . . . . . . . . 29 11.3.3 Vòng 2 - Ngày 2 . . . . . . . . . . . . . . . . . . . . . . 29 12 Qu ng Bình 30 12.1 Vòng 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 12.2 Vòng 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 13 Kon Tum 32 13.1 Ch n đ i tuy n qu c gia . . . . . . . . . . . . . . . . . . . . . 32 - - -phuchung- - - 2
  4. Tuy n t p đ thi HSG 2008-2009 M CL C 14 Vĩnh Phúc 33 14.1 H c sinh gi i l p 11 . . . . . . . . . . . . . . . . . . . . . . . . 33 15 Bình Đ nh 34 15.1 H c sinh gi i l p 12 . . . . . . . . . . . . . . . . . . . . . . . . 34 15.2 H c sinh gi i l p 11 . . . . . . . . . . . . . . . . . . . . . . . . 35 16 Thái Bình 35 16.1 Đ thi h c sinh gi i 12 . . . . . . . . . . . . . . . . . . . . . . 35 17 Khánh Hòa 37 17.1 H c sinh gi i b ng B . . . . . . . . . . . . . . . . . . . . . . . 37 18 Nam Đ nh 38 18.1 Ngày 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 18.2 Ngày 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 - - -phuchung- - - 3
  5. Tuy n t p đ thi HSG 2008-2009 1 H I PHÒNG 1 H i Phòng 1.1 Ch n sinh gi i không chuyên Bài 1: (3 đi m) 2x + 1 Cho hàm s y = x−2 1. Ch ng minh r ng m i ti p tuy n c a đ th l p v i 2 đư ng ti m c n m t tam giác có di n tích không đ i. 2. Tìm các đi m thu c đ th hàm s tho mãn ti p tuy n t i đi m đó l p v i 2 đư ng ti m c n 1 tam giác có chu vi nh nh t. Bài 2: (1 đi m) Cho phương trình: (65 sin x − 56) (80 − 64 sin x − 65cos2 x) = 0 (1) Ch ng minh r ng t n t i 1 tam giác có các góc tho mãn phương trình (1). Bài 3: (3 đi m) Cho hình chóp S.ABCD có đáy là n a l c giác đ u c nh a, đư ng cao SA = h. 1. Tính th tích kh i chóp S.ABCD. 2. M t ph ng đi qua A và vuông góc v i SD c t SB, SC, SD theo th t t i các đi m A’, B’, C’. Ch ng minh r ng t giác AB’C’D’ n i ti p trong 1 đư ng tròn. 3. Ch ng minh r ng AB’>C’D’. Bài 4: (2 đi m) Cho phương trình ax3 + 21x2 + 13x + 2008 = 0 (1). Bi t r ng phương trình (1) có 3 nghi m th c phân bi t, h i phương trình sau có t i đa bao nhiêu nghi m th c: 2 4 (ax3 + 21x2 + 13x + 2008) (3ax + 21) = (3ax2 + 42x + 13) Bài 5: (1 đi m) Cho h phương trình sau: cos x = x2 y tan y = 1 Ch ng minh r ng h đã cho có duy nh t 1 nghi m (x; y) tho mãn 0 < x < y
  6. Tuy n t p đ thi HSG 2008-2009 2 NGH AN 1.2 Ch n đ i tuy n qu c gia Bài 1: Tìm nghi m nguyên dương c a phương trình: x2 + y 2 + z 2 + t2 = 10.22008 Bài 2: Cho 3 s th c dương x, y, z tho mãn x + y + z + 1 = 4xyz. Ch ng minh r ng: xy + yz + xy ≥ x + y + z Bài 3: Cho hàm s f (x) : N ∗ → N tho mãn: f (1) = 2; f (2) = 0; f (3k) = 3f (k) + 1; f (3k + 1) = 3f (k) + 2; f (3k + 2) = 3f (k) H i có th t n t i n đ f (n) = 2008 đư c không? Bài 4: Cho tam giác ABC v i O, I theo th u t là tâm c a đư ng tròn ngo i, n i ti p tam giác. Ch ng minh r ng AIO ≤ 900 khi và ch khi AB + AC ≥ 2.BC Bài 5.   u1 = 1 Cho dãy (un ) tho mãn: u2 n  un+1 = un + 2008 n ui Hãy tính lim i=1 ui+1 2 Ngh An 2.1 Ch n đ i tuy n qu c gia 2.1.1 Vòng 1 Bài 1 (2đ): Gi i h phương trình:   |y|√ |x − 3| = (2 z − 2 + y)y = 1 + 4y  2 x + z − 4x = 0 - - -phuchung- - - 5
  7. Tuy n t p đ thi HSG 2008-2009 2 NGH AN Bài 2 (3đ) Cho s nguyên a.Ch ng minh r ng: phương trình x4 − 7x3 + (a + 2)x2 − 11x + a = 0 không th có nhi u hơn 1 nghi m nguyên. Bài 3 (3đ) √ √ Cho dãy s th c xn đư c xác đ nh b i: x0 = 1, xn+1 = 2+ xn −2 1 + xn ∀n ∈ N n Ta xác đ nh dãy yn b i công th c yn = xi .2i , ∀n ∈ N ∗ .Tìm công th c t ng i=1 quát c a dãy yn Bài 4 (3đ) Cho các s nguyên a,b,c khác 0 tho mãn:   a b c  + + ∈Z b c a  a+ b +c ∈Z  c a b 4 4 3a 2b c4 Ch ng minh r ng: 2 + 2 + 2 − 4|a| − 3|b| − 2|c| ≥ 0 b c a Bài 5 (3đ) Trong mp to đ Oxy cho 9 đi m có to đ là các s nguyên,trong đó không có 3 đi m nào th ng hàng. Ch ng minh r ng t n t i ít nh t 1 tam giác có 3 đ nh là 3 trong 9 đi m trên có di n tích là 1 s ch n. Bài 6 (3đ) Cho 2 đư ng tròn (O) và (O ) ti p xúc trong t i đi m K,((O ) n m trong (O)).Đi mA n m trên (O)sao cho 3 đi m A, O, O không th ng hàng.Các ti p tuy n AD và AE c a (O ) c t (O) l n lư t t i Bvà C (D, E là các ti p đi m).Đư ng th ng AO c t (O) t i F .Ch ng minh r ng các đư ng th ng BC, DE, F K đ ng quy Bài 7 (3đ) Cho n ≥ 2, n ∈ N .Kí hi u A = {1, 2, ..., n}.T p con B c a t p A đư c g i là 1 t p "t t" n u B khác r ng và trung bình c ng c a các ph n t c a B là 1 s nguyên.G i Tn là s các t p t t c a t p A.Ch ng minh r ng Tn −n là 1 s ch n - - -phuchung- - - 6
  8. Tuy n t p đ thi HSG 2008-2009 2 NGH AN 2.1.2 Vòng 2 Bài 1 (2đ) √ Gi i phương trình: 16x3 − 24x2 + 12x − 3 = 3 x Bài 2 (3đ) Tìm t t c các s nguyên a, b, c tho mãn đi u ki n 1 < a < b < c và abc chia h t cho (a − 1)(b − 1)(c − 1) Bài 3 (3đ) √ Cho a, b, c, x, y, zlà các s th c thay đ i tho mãn (x + y)c − (a + b)z = 6. Tìm GTNN c a bi u th c: F = a2 + b2 + c2 + x2 + y 2 + z 2 + ax + by + cz Bài 4 (3đ) Tìm t t c các hàm f : R → R sao cho: f (x + cos(2009y)) = f (x) + 2009cos(f (y)), ∀x, y ∈ R Bài 5 (3đ) Cho tam giác ABC thay đ i.G iH là tr c tâm,O là tâm đư ng tròn ngo i ti p và R là bán kính đư ng tròn ngo i ti p c a tam giác ABC.Xác đ nh OH GTNN c a s k sao cho
  9. Tuy n t p đ thi HSG 2008-2009 2 NGH AN 2.2 Ch n đ i tuy n Đ i h c Vinh Bài 1: Ch ng minh r ng v i m i x thì: 1 1 1 1 + cosx + cos2x + cos3x + cos4x > 0 2 3 4 Bài 2: Tìm các giá tr không âm c a m đ phương trình sau có nghi m: √ √ √ x−m+2 x−1= x Bài 3: Đ t A = {n, n + 1, n + 2, n + 3, n + 4, n + 5, n + 6, n + 7}. Tìm m i s nguyên dương n sao cho t n t i hai t p B, C r i nhau th a m n đ ng th i: 1.A = B ∪ C 2. x = y(x ∈ B, y ∈ C) Bài 4: Trong m t ph ng cho đư ng tròn (O) và đư ng th ng d không có đi m chung v i (O). G i H là hình chi u c a O lên d, g i M là m t đi m trên d ( M không trùng v i H). T M k các tuy p tuy n MA, MB v i (O). G i C, D là hình chi u c a H lên MA, MB. Các đư ng th ng CD, AB c t OH t i I và K. Cm I là trung đi m c a HK. 2.3 Ch n h c sinh gi i không chuyên Bài 1: (3 đi m) π Tìm m đ phương trình sau có 4 nghi m phân bi t thu c đo n [0; ] 4 4 4 2 sin x + cos x + cos 4x = m Bài 2: (3 đi m) Cho h : ( a là tham s ) √ √ √x + y = 4 √ x+7+ y+7≤a Tìm a đ h có nghi m (x; y) th a mãn đi u ki n : x ≥ 9 Bài 3:(3 đi m) Cho hàm s : - - -phuchung- - - 8
  10. Tuy n t p đ thi HSG 2008-2009 3 TH A THIÊN HU √ 3 1 + xsin2 x − 1, khix = 0 0, khix = 0 Tính đ o hàm c a hàm s t i x = 0 và ch ng minh r ng hàm s đ t c c ti u t ix=0 Bài 4: (3 đi m) Cho 3 s dương a, b, c thay đ i . Tìm giá tr l n nh t c a bi u th c : √ √ √ bc ca ab P = √ + √ + √ a + 3 bc b + 3 ca c + 3 ab Bài 5:(3 đi m) Cho n là s t nhiên , n ≥ 2. Ch ng minh đ ng th c sau : n2 Cn + (n − 1)2 Cn + (n − 2)2 Cn + ... + 22 Cn − 2 + 12 Cn − 1 = n(n + 1)2n−2 0 1 2 n n Bài 6: (2 đi m) Cho kh i chóp S.ABCD có đáy ABCD là hình bình hành . G i M, N, P l n lư t là trung đi m c a các c nh AB, AD, SC . Ch ng minh r ng m t ph ng (MNP) chia kh i chóp S.ABCD thành hai ph n có th tích b ng nhau. Bài 7:(2 đi m) Cho t di n ABCD có AB=CD, AC=BD, AD=BC và m t ph ng (CAB) 1 vuông góc v i m t ph ng (DAB). Ch ng minh r ng : cotBCD.cotBDC = 2 3 Th a Thiên Hu 3.1 Ch n h c sinh gi i không chuyên Bài 1: (3 đi m) 1 1 Cho phương trình cos x − sin x + − + m = 0 (1) sin x cos x 2 π 3π a) V i m = , tìm các nghi m c a phương trình (1) trên kho ng − ; . 3 4 4 b) V i giá tr nào c a m thì phương trình (1) có 2 nghi m trên kho ng π 3π − ; . 4 4 - - -phuchung- - - 9
  11. Tuy n t p đ thi HSG 2008-2009 3 TH A THIÊN HU Bài 2: (3 đi m) Cho đi m A c đ nh trên đư ng tròn và đi m C di đ ng trên đư ng tròn đó. D ng hình thoi ABCD (hư ng quay c a tia AB đ n AC và AD theo chi u √ dương lư ng giác) sao cho góc ABC = 2arc cot 2. a) Xác đ nh phép đ ng d ng bi n đi m C thành đi m B. b) Tìm qu tích c a các đi m B và D. Xác đ nh các qu tích đó. Bài 3: (3 đi m) a) Gi i h phương trình  log8 xy = 3log8 x.log8 y x 3  log2 = logy x y 4 e) Gi i b t phương trình: 1 3 log2 x.log 3 x + 3 > log2 x + log 3 x 2 4 2 4 Bài 4: (2 đi m) 3 7 11 4n − 1 Cho dãy s un = + 2 + 3 +···+ v i m i s nguyên dương n. 2 2 2 2n a) Ch ng t r ng các t s c a các s h ng liên ti p c a un l p thành m t c p s c ng. b) Hãy bi n đ i m i s h ng c a thành m t hi u liên quan đ n 2 s h ng k ti p c a nó, t đó rút g n un và tính lim un Bài 5: (3 đi m) a) Tính t ng các s ch n có 4 ch s đư c vi t t các ch s 1, 2, 3, 4. b) Tìm h s c a s h ng không ch a trong khai tri n nh th c Niu-tơn c a √ n 1 √ + x 3 x2 bi t r ng t ng các h s c a các s h ng trong khai tri n 3 x này là a0 + a1 + a2 + ... + an = 4096 Bài 6: (3 đi m) Cho c c nư c ph n trên là hình nón đ nh S, đáy có tâm O bán kính R, chi u cao SO = h. Trong c c nư c đã ch a m t lư ng nư c có chi u cao a so v i đính S. Ngư i ta b vào c c nư c m t viên bi hình c u thì nư c dâng lên v a ph kín qu c u. Hãy tính bán kính c a viên bi theo R và h. - - -phuchung- - - 10
  12. Tuy n t p đ thi HSG 2008-2009 3 TH A THIÊN HU Bài 7: (3 đi m) Cho hình chóp tam giác đ u S.ABC c nh đáy a, góc gi a m i m t bên và m t đáy b ng ϕ. a) Tính bán kính m t c u ti p xúc v i m t đáy và các c nh bên c a hình chóp. b) M t ph ng (P) t o b i đư ng th ng AB và đư ng phân giác c a góc gi a m t bên SAB và m t đáy (góc này có đ nh trên AB) c t hình chóp theo m t thi t di n và chia hình chóp đ u thành hai ph n. Tính t s th tích c a hai ph n đó. 3.2 Ch n đ i tuy n qu c gia Bài 1: (4 đi m) Tìm các c p s th c (x;y) sao cho: 2x + 4y = 32 xy = 8 Bài 2: (6 đi m) Cho kh i lăng tr đ ng (L) có c nh bên b ng 7a. Đáy c a (L) là l c giác l i ABCDEF có t t c các góc đ u b ng nhau và AB = a, CD = 2a, EF = 3a, DE = 4a, F A = 5a, BC = 6a. a) Tính theo a th tích c a kh i lăng tr (L) b) Ch ng t r ng có th chia kh i lăng tr (L) thành 4 kh i đa di n trong đó có m t kh i lăng tr đ u đáy tam giác và ba kh i h p. Bài 3: (6 đi m) √ G i (C) là đ th hàm s y = x3 − 2 2x đư c d ng trên m t ph ng t a đ Oxy. a) Ch ng t r ng n u m t hình bình hành có t t c các đ nh đ u n m trên (C) thì tâm c a hình bình hành đó là g c t a đ O. b) H i có bao nhiêu hình vuông có t t c các đ nh n m trên (C) Bài 4: (4 đi m) a) Cho t p h p S có n ph n t . Ch ng minh r ng có đúng 3n c p có th t (X1 ; X2 ) v i X1 và X2 là các t p con c a S th a mãn đi u ki n X1 ∪ X2 = S b) H i có bao nhiêu cách thành l p t p h p {A; B}, trong đó A và B là hai t p h p khác nhau sao cho A ∪ B = {1, 2, 3, .., 2008} - - -phuchung- - - 11
  13. Tuy n t p đ thi HSG 2008-2009 4 HÀ TĨNH 4 Hà Tĩnh 4.1 Ch n h c sinh gi i không chuyên Bài 1 : a/Tìm các giá tr c a m đ hàm s y = x3 − 3(m − 1)x2 + 3(2m + 1)x + 1 √ đ t c c đ i, c c ti u t i (x1 ; x2 ) sao cho |x1 − x2 | ≤ 2 5 √ b/Tìm m đ phương trình có nghi m :(m − 1)x = (m − 2)( x − 1) Bài 2 : Gi i h phương trình:  4  x − 16 y4 − 1 = 8x y  2 x − 2xy + y 2 = 8 Bài 3 : Nh n d ng tam giác: √ 4 √ √ A B C sinA + 4 sinB + 4 sinC = 4 cos + 4 cos + 4 cos 2 2 2 Bài 4: Hình chóp t giác đêu S.ABCD có góc gi a m t bên và đáy là α.V đư ng cao SH c a hình chóp,G i E là điêm thu c SH và có kho ng cách t i 2 m t(ABCD) và (SCD) b ng nhau.mp(P) đi qua E,C,D c t SA,SB l n lư t t i M,N. a/Thi t di n là hình gì? b/G i th tích các kh i đa di n S.NMCD và ABCDNM l n lư t là V1 , V2 .Tìm α đ 3V2 = 5V1 Bài 5 : Cho x, y, z ≥ 0 th a x + y + z = 1.TÌM GTNN c a: 1−x 1−y 1−z P = + + 1+x 1+y 1+z 4.2 Ch n đ i tuy n qu c gia 4.2.1 Vòng 1 Bài 1 : Gi s đ th hàm s - - -phuchung- - - 12
  14. Tuy n t p đ thi HSG 2008-2009 4 HÀ TĨNH f (x) = x3 − 6x2 + 9x + d c t tr c hoành t i 3 đi m có hoành đ x1 , x2 , x3 v i x1 < x2 < x3 . Ch ng minh: 0 < x1 < 1 < x2 < 3 < x3 < 4. Bài 2 : Gi i phương trình: cos 2x 4 4 cot6 x + 3(1 − ) =7 sin2 x Bài 3: Cho t giác ABCD n i ti p đư ng tròn (O; R). Các tia đ i c a các tia BA, DA, CB, CD cùng ti p xúc v i đư ng tròn (I; r). Đ t d = OI. Ch ng minh r ng: 1 1 1 = + r2 (d + R)2 (d − R)2 Bài 4: Tìm t t c các hàm f : R → R, g : R → R tho mãn đ ng th i các đi u ki n sau: 1)∀x, y ∈ R thì 2f (x) − g(x) = f (y) − y 2) ∀x ∈ R thì f (x).g(x) ≥ x + 1 Bài 5 : Dãy s (xn ) v i n = 1, 2, 3, ... đư c xác đ nh b i: 1 x1 = 3, xn+1 = x2 − xn + 2∀n ∈ N ∗ 2 n n 1 Tìm gi i h n c a dãy Sn = i=1 xi 4.2.2 Vòng 2 Bài 1: 1) Gi i phương trình: x2 − 10[x] + 9 = 0 2) Gi i b t phương trình: √ √ √ x3 − x2 + x − 1 < 5 + −x + 8 - - -phuchung- - - 13
  15. Tuy n t p đ thi HSG 2008-2009 5 C N THƠ Bài 2: −1 x2 − 1 Cho dãy (xn )∞ bi t x1 = n=1 , xn+1 = n v i m i n = 1, 2, 3, ... 2 2 Tìm gi i h n c a dãy (xn )∞ khi n → ∞ n=1 Bài 3: Cho hàm f : N → N tho mãn tính ch t f (f (n)) + f (n) = 2n + 3∀n ∈ N Tính f (2008) Bài 4: Cho tam giác ABC n i ti p (O) và ngo i ti p (I). Đư ng th ng d c t các c nh AB, AC l n lư t t i M, N 1) Ch ng minh r ng đư ng th ng d đi qua I khi và ch khi AB + BC + CA 1 1 = + AB.AC AM AN 2) K là m t đi m b t kỳ trên đư ng tròn ngo i ti p tam giác ABC, K thu c cung BC không ch a đi m A (K khác B, C). Các tia phân giác c a các góc ˆ ˆ BKA, CKA c t các c nh AB, AC l n lư t t i D, E. Ch ng minh r ng DE luôn luôn đi qua I khi K thay đ i. Bài 5: √ Tìm giá tr l n nh t c a bi u th c P = 13 sin x + 9 cos2 x − 4 cos x + 3 v i x ∈ [0; π] Bài 6: Cho p là m t s nguyên t . Ch ng minh đa th c sau b t kh quy trên Z[x]: xp−1 + 2xp−2 + 3xp−3 + ..... + (p − 1)x + p 5 C n Thơ 5.1 Vòng 1 Bài 1: ( 2.5 đi m ) Gi i phương trình sau trên R: - - -phuchung- - - 14
  16. Tuy n t p đ thi HSG 2008-2009 5 C N THƠ x4 − 6x2 − 12x − 8 = 0 Bài 2: ( 2.5 đi m ) Gi i h phương trình sau trên R: y 2 − xy + 1 = 0 x2 + y 2 + 2x + 2y + 1 = 0 Bài 3: ( 3 đi m ) ˆ Trong m t ph ng cho tam giác ABC , có AB = a , AC = b , BAC = 135o , ˆ o đi m M n m trên c nh BC c a tam giác sao cho BAM = 45 . Tính đ dài AM theo a,b . Bài 4: ( 3 đi m ) Trong không gian cho hình chóp S.ABC , tr ng tâm tam giác ABC là G , trung đi m SG là I. M t ph ng (α) qua I c t các tia SA , SB , SC l n lư t t i M , N , P (không trùng v i S) . Xác đ nh v trí m t ph ng (α) đ th tích kh i chóp S.MNP là nh nh t . Bài 5: ( 3 đi m ) Trong không gian cho hình chóp S.ABC , T là đi m thay đ i trong m t ph ng ABC. Đư ng th ng qua T . song song v i đư ng th ng SA c t m t ph ng (SBC) t i A’ . Đư ng th ng qua T . song song v i đư ng th ng SB c t m t ph ng (SBC) t i B’ . Đư ng th ng qua T . song song v i đư ng th ng SC c t m t ph ng (SBC) t i C’ . M t ph ng (A’B’C’) c t đư ng th ng ST t i đi m I . SI Ch ng minh t s không thay đ i khi đi m T thay đ i trong m t đáy ST ABC trong m t đáy ABC c a hình chóp S.ABC. Bài 6: ( 3 đi m ) Cho đa th c v i h s th c P (x) = x4 + ax3 + bx2 + cx + d, bi t r ng phương trình P (x) = 0 không có nghi m th c . Ch ng minh F (x) = P (x) + P (x) + P (x) + P (x) + P (4) (x) > 0 v i m i s th c x . - - -phuchung- - - 15
  17. Tuy n t p đ thi HSG 2008-2009 5 C N THƠ Bài 7: ( 3 đi m ) Cho n√ th c a1 ,√2 , ..., an khác 0 √đôi m t phân bi t . Ch ng minh phương s a , trình 1 + a1 x + 1 + a2 x + ... + 1 + an x = n có không có quá hai nghi m th c phân bi t . 5.2 Vòng 2 Bài 1: ( 3 đi m ) Tìm t t c các nghi m th c c a phương trình : √ x2 + 5x − 10 = 60 − 24x − 5x2 Bài 2: ( 3 đi m ) Cho các s th c dương a , b , c . Ch ng minh b t đ ng th c : (a − b − c)2 (b − c − a)2 (c − a − b)2 1 + 2 + 2 ≥ 2a2 + (b + c)2 2b + (c + a)2 2c + (a + b)2 2 Bài 3: ( 3 đi m ) Trong m t ph ng cho tam giác đ u AEF và hình ch nh t ABCD . Các đ nh E , F c a tam giác đ u l n lư t n m trên các c nh BC , CD c a hình ch nh t ABCD . Ch ng minh r ng t ng di n tích c a hai tam giác ABE và ADF b ng di n tích tam giác CEF. Bài 4: ( 4 đi m ) √ Cho hàm s f (x) = (x3 − 3x2 + 2) x2 − 2x + 3 . Ch ng minh r ng v i m i s th c m , h phương trình sau luôn có nghi m th c : f (2008) (x) + f (2008) (y) = 0 x2 − my = 4 − m Bài 5: ( 3 đi m ) Cho dãy s th c (an ) đư c xác đ nh b i công th c truy h i:   a1 = 1  2  a a2 n  n+1 = 2 an − a2 + 1 n Ch ng minh a1 + a2 + ... + an ≤ 1 v i m i s nguyên dương n . Bài 6: ( 4 đi m ) Tìm t t c các c p s nguyên (x, y) th a mãn : - - -phuchung- - - 16
  18. Tuy n t p đ thi HSG 2008-2009 6 BÀ R A VŨNG TÀU 2008x3 − 3xy 2 + 2008y 3 = 2009 6 Bà R a Vũng Tàu 6.1 Ch n đ i tuy n trư ng chuyên Lê Quý Đôn Bài 1: Gi i h phương trình: 8 2 18 x2 + y 2 + z 2 = yz + = 2zx − = 3xy + x y z Bài 2: 1 Cho dãy s xác đ nh b i x1 = 1; xn+1 = − 2008. Ch ng minh r ng 2(x2 n + 1) dãy s có gi i h n h u h n. Câu 3: Cho tam giác ABC nh n, n i ti p đư ng tròn (O). G i I là đi m gi a c a cung BC không ch a đi m A và K là trung đi m c a BC. Hai ti p tuy n c a (O) t i B, C c t nhau M; AM c t BC t i N. Ch ng minh r ng: 1) AI là phân giác góc M AK NB AB 2 2) = NC AC 2 Bài 4: Tìm t t c các hàm s liên t c trên R và th a mãn: f (x) − 2f (2x) + f (4x) = x2 + x v i m i x Bài 5: Cho a, b, c là các s không âm phân bi t. Ch ng minh r ng: √ 2 2 2 1 1 1 11 + 5 5 (a + b + c )( + + )≥ (a − b)2 (b − c)2 (c − a)2 2 Bài 6: Trên bàn c vua kích thư c 8x8 đư c chia thành 64 ô vuông đơn v , ngư i ta b đi m t ô vuông đơn v nào đó v trí hàng th m và c t th n . G i - - -phuchung- - - 17
  19. Tuy n t p đ thi HSG 2008-2009 7 THANH HÓA S(m;n) là s hình ch nh t đư c t o b i m t hay nhi u ô vuông đơn v c a bàn c sao cho không có ô nào trùng v i v trí c a ô b xóa b ban đ u. Tìm giá tr nh nh t và giá tr l n nh t c a S(m;n). 7 Thanh Hóa 7.1 Vòng 1 Bài 1: (5 đi m) a) Gi i b t phương trình: 2 −4 3x + (x2 − 4).3x−2 ≥ 1 b) Xác đ nh t t c các hàm s f (x) : R → R tho mãn: f (x) = max {2xy − f (y)} , ∀x ∈ R y∈R Bài 2: (4 đi m) Cho A là m t t p h p g m 8 ph n t . Tìm s l n nh t các t p con g m 3 ph n t c a A sao cho giao c a 2 t p b t kì trong các t p con này không ph i là m t t p h p g m 2 ph n t . Bài 3: (5 đi m) Cho hàm s : f (x) = xn + 29xn−1 + 2009 v i n ∈ N, n ≥ 2. Ch ng minh r ng f (x) không th phân tích thành tích c a 2 đa th c h s nguyên có b c l n hơn ho c b ng 1. Bài 4: (6 đi m) Cho tam giác ABC, D là m t đi m b t kì trên tia đ i c a tia CB. Đư ng tròn n i ti p các tam giác ABD và ACD c t nhau t i P và Q. Ch ng minh r ng đư ng th ng P Q luôn đi qua m t đi m c đ nh khi D thay đ i. 7.2 Vòng 2 Bài 1: Gi i phương trình: log3 2x + 1 + log5 4x + 1 + log7 6x + 1 = 3x - - -phuchung- - - 18
  20. Tuy n t p đ thi HSG 2008-2009 7 THANH HÓA Bài 2: Ch ng minh v i m i s dương a1 , a2 , ...an tho n mãn a1 .a2 ...an = 1. Ta có b t đ ng th c: √ a2 + 1 + ... + a2 + 1 ≤ 2(a1 + ... + an ) 1 n Bài 3: Tìm t t c các c p s nguyên dương (x,y) sao cho: x29 − 1 = y 12 − 1 x−1 Bài 4: Đư ng tròn (w) ti p xúc v i hai c nh b ng nhau AB,ÂC c a tam giác cân ABC và c t c nh BC t i K,L . Đo n K,L c t (w) t i đi m th hai M . P,Q tương ng đ i x ng v i K qua B,C. Ch ng minh đư ng tròn ngo i ti p PMQ ti p xúc v i (w) 7.3 Lam Sơn 11 Bài 1: √ √ Gi i phương trình: x + 4 − x2 = 2 + x 4 − x2 Bài 2: Gi i h phương trình: 2y(x2 − y 2 ) = 3x x(x2 + y 2 ) = 10y Bài 3: Cho tam giác ABC , M là trung đi m BC và H là tr c tâm. Ch ng minh r ng: 1 M A2 + M H 2 = AH 2 + BC 2 2 Bài 4: √ √ Cho phương trình: sinx + 2 − sinx2 + sinx 2 − sinx2 = m 1) Gi i phương trình v i m = 3. 2) Tìm m đ phương trình có nghi m. Bài 5: - - -phuchung- - - 19

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản