Xây dựng bất đẳng thức từ 2 bộ đề hay

Chia sẻ: Trần Bá Trung1 | Ngày: | Loại File: PDF | Số trang:19

2
410
lượt xem
246
download

Xây dựng bất đẳng thức từ 2 bộ đề hay

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Xây dựng bất đẳng thức từ 2 bộ đề hay Có thể nói tằng bài toán bất đằng thức nói chung và bài toán tìm GTNN, GTLN nói riêng là một trong nhửng bài toán được quan tâm đến nhiều ở các kỳ thi Học sinh giỏi, tuyển sinh Đại học,…và đặc biệt hơn nữa là với xu hước ra đề chung của Bộ GD – ĐT. Trong kỳ thi tuyển sinh Đại học thì bài toán bất đẳng thức là bài toán khó nhất trong đề thi mặc dù chỉ cần sử dụng một số bất đẳng thức...

Chủ đề:
Lưu

Nội dung Text: Xây dựng bất đẳng thức từ 2 bộ đề hay

  1. xi a xi a 1;2;3 xj a xj a x a x a y a y a x 1 x 1 y 1 y 1 ơ ề WWW.MATHVN.COM
  2. ' x x 1 x 1 y 1 y 1 3 z 3 .1 .1 3 x 3 .z 3 .1 3 y 3 .z 3 .1 3 x 3 .y 3 .1 ơ ề WWW.MATHVN.COM
  3. m 0 m 0 x y n 1 1 n 2m 1 2m z 0, x, y R z 0, x, y R 1 4m 2 0 2( y 4 m 2 2) 1 4m 2 0 1 2(1 4m 2 ) ' x 0, y R ' x 0, y R ' x ' x 2m 2 (1 2m 2 ) 0 4m 2 (1 2m 2 ) 1 2m 2 0 1 ' 4m 2 (1 2m 2 ) y 0 ' y 0 ' y ' y ơ ề WWW.MATHVN.COM
  4. m 0 2 n 2m 1 m 2 1 4m 2 0 n 2m 1 1 2m 2 0 p 3m 2 p 3m 2 2 2 2 2 2 2 m 0 m0 (1 n) x (1 n) y 1 2n 1 1 m 2m 2 z 0, x, y R z 0, x, y R 2n 1 2 ơ ề WWW.MATHVN.COM
  5. n(2 3n) 0 2[(3n 2 3n 1) y n 1] n(2 3n) 0 1 ' 2n(2 3n) x 0, y R ' x 0, y R ' x (1 n)(6n 2 5n 1) 0 2(1 n)(6n 2 5n 1) (1 n)(6n 2 5n 1) 0 1 ' 2(1 n)(6n 2 5n 1) y 0 ' y 0 ' y 2n 1 ' 1 y 2 2 m 0 2n 1 m n 1 2 n(2 3n) 0 2n 1 m (1 n)(6n 2 5n 1) 0 2 1 1 p p 2 2 2n 1 1 2 2 2n 1 1 2 2 0) 0 ơ ề WWW.MATHVN.COM
  6. 2 p 0, q 0 2 t t 1 (0; ) 1 1 t (t 1) 1 1 (t 1) 0 t 1 0 t 1 f (t ) 0 (0; ) (0; ) x2 y2 z2 x2 y2 z2 3 3 2 2 p 0, q 0 3 2 ơ ề WWW.MATHVN.COM
  7. x 2 .1 y2z2 z 2 1 x2 y2 x2 y2 z2 1 2 2 2 2 x y z2 1 2 2 0 3 z 3t 3 3 x3 y 3 z 3 3 x 3 y 3t 3 z3 t3 1 x3 y3 z3 x3 y3 t3 2( x 3 y3 z3 t3) 1 3 3 3 3 2( x 3 y 3 z 3 t3) 1 3 n n n n xi xin 1 xi i 1 i 1 j 1 i 1, i j n n xi xi i 1 i 1, i j ơ ề WWW.MATHVN.COM
  8. 3n 1 ( x 3n 1 ) n 1 ( y 3n 1 ) n 1 ( z 3n 1 ) n 3n 1 ( x 3n 1 ) n ( y 3n 1 ) n ( z 3n 1 ) n 1 (n 1) x 3n 1 (n 1) y 3n 1 nz 3n 1 1 nx 3n 1 ny 3n 1 (n 1) z 3n 1 3n 1 3n 1 ( 2n 1)( x 3n 1 y 3n 1 3n 1 z ) 1 3n 1 (2n 1)( x 3n 1 y 3n 1 z 3n 1 ) 1 3n 1 1 1 x x 3 3 1 1 y y 3 3 ơ ề WWW.MATHVN.COM
  9. 1 1 3 2 1 1 1 3 2 2 1 2 a b c , , k k k 9 1 4 4 9 9 1 9 4 4 4 4 3 9 9 9 9 x y z 1 m 4 4 4 4 3 12 27 m 9 1 27 3 ơ ề WWW.MATHVN.COM
  10. 9 9 9 4 4 4 1 1 4 2 3 3 xyz xyyzzx xy yz zx 9 xyz 0 xy yz zx 9 xyz 0 3 x y z m 9 3 27 m 9 1 27 3 1 m 9 4 27 9 1 4 4 9 m 9 4 27 m 9 1 27 4 1 9 4 4 m 9 9 27 4 ơ ề WWW.MATHVN.COM
  11. 7 27 7 27 7 27 2 9 2 9 1 27 1 1 3 27 1 1 3 2 0; 2t 0 t0 0 27 3 1 1 1 1 0; 3 27 3 3 3 2 2t 0 t0 0 1 t0 x y ; z t0 2 3 2 2t 0 t 0 ơ ề WWW.MATHVN.COM
  12. 1 1 1 4 4 4 1 7 4 27 2 1 9 4 3m q xy yz zx xyz p 3m 2n p 3m 2n 0 p 3m 2n 0 3m q 2 q 3m 4n 2 p p 3m 2n p 3m 2n 7( p 3m 2n) m n m n 4 27 p m 2n 7 p 6m 13n 4 27 7 p 6m 13n p m 2n 27 4 26 27 ơ ề WWW.MATHVN.COM
  13. 13 1 27 2 a b c , , 2 2 2 52 27 x 1 x 1 y 1 y 1 4 xy x y xy 4 xy x y xy ơ ề WWW.MATHVN.COM
  14. x 1 x 1 y 1 y 1 x2 y2 2 xy (4 x 2 )(4 y2 ) xy (4 x 2 )(4 y2 ) 2 2 xy (4 x 2 )(4 y2 ) 2 xy (4 x 2 )(4 y2 ) 2 ( 4 x 2 )(4 y2 ) 0 0 0 3 4 ơ ề WWW.MATHVN.COM
  15. 1 1 x x 2 2 1 1 y y 2 2 1 3 4 4 1 4 3 4 x2 1 x2 1 2 2 y 1 y 1 ơ ề WWW.MATHVN.COM
  16. x2 1 x2 1 2 2 y 1 y 1 2 2 2 1 2 n Sx , Sy , Sz x a x a y a y a ơ ề WWW.MATHVN.COM
  17. 1;2;...; n xi xi i An i S n \ An xi xi i A2 i S 2 \ A2 1 xi xi i Ak i S k \ Ak xi xi i Ak i S k \ Ak ak ; k ak xi i Ak xi i S k \ Ak xi xi i Ak i S k \ Ak k 1 k 1 ơ ề WWW.MATHVN.COM
  18. 2 2 2 1 2 n xi2 xi2 i An i S n \ An 1;2;...; n xi2 xi2 i An i S n \ An 2 x i xi2 i An i S n \ An xi xi i S n \ An i An 2 2 2 1 2 n 2 2 1 2 ơ ề WWW.MATHVN.COM
  19. ơ ề ơ ề WWW.MATHVN.COM

CÓ THỂ BẠN MUỐN DOWNLOAD

Đồng bộ tài khoản